header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

THE EFFECT OF SUBJECT-SPECIFIC LOADING PATTERNS ON HIP CARTILAGE SHEAR STRESS

The European Orthopaedic Research Society (EORS) 25th Annual and Anniversary Meeting, Munich, Germany, September 2017. Part 2 of 2.



Abstract

Introduction

Modification in joint loading, and specifically shear stress, is found to be an important mechanical factor in the development of osteoarthritis (OA). Cartilage shear stresses can be investigated using finite element (FE) modelling, where typically in vivo joint loading as measured by an instrumented hip prosthesis is used as boundary condition. However, subject-specific gait characteristics substantially affect joint loading. The goal of this study is to investigate the effect of subject-specific joint loading as calculated using a subject-specific musculoskeletal model and integrated motion capture data on acetabular shear stress.

Methods

Three healthy control subjects walked at self-selected speed while measuring marker trajectories (Vicon, Oxford Metrics, UK) and force data (two AMTI force platforms; Watertown, MA). A subject-specific MRI-based musculoskeletal model consisting of 14 segments, 19 degrees of freedom and 88 musculotendon actuators, and including wrapping surfaces around the hip joint, was used. All analyses were performed in OpenSim 3.1. The model was scaled to the dimensions of each subject using the marker positions of a static pose. A kalman smoother procedure was used to calculate joint angles. Muscle forces were calculated using static optimization, minimizing the sum of squared muscle activations, and hip contact forces (HCF) were calculated and normalized to body weight (BW). To calculate shear stress, HCFs and joint angles calculated during the stance phase of gait were imposed to a hip finite element model (hip_n10rb) using FFEbio 2.5. In the model, femoral and acetabular cartilage were represented using the Mooney-Rivlin formulation (c1=6.817, bulk modulus=1358.86) and the pelvis and femur bones as rigid bodies. Peak HCF as well as maximal acetabular shear stress, magnitude and location, and the HCF at the time of maximal shear stress were compared between subjects.

Results

Maximal shear stress was lower for S3 compared to S1 and S2 (9.14, 9.48 and 7.14 MPa for S1, S2 and S3 respectively). Nevertheless, HCF at the time instance of peak stress as well as peak HCF were highest for S3 (S1: 2.40/4.54 BW, S2: 2.97/4.78 BW and S3: 3.13/6.46 BW respectively). Maximal shear stress also occurred earlier in the stance phase for S3 compared to S1 and S2 (31, 26 and 11% of the stance phase for S1, S2 and S3 respectively). In addition, the location of the peak maximal shear stress was found to be more superior for S3.

Discussion

Subject-specific loading patterns clearly influence the calculated maximal shear stress in the acetabular cartilage, affecting both the magnitude and the location of the stress. In addition, higher shear stresses are not coinciding with higher HCFs. This finding highlights the need of subject-specific rather than generic loading patterns when assessing cartilage shear stresses and associated risk in OA development in individual patients.


Email: