Abstract
Considerable evidence exists that aseptic loosening is initiated by wear particles that recruit macrophages and stimulate their production of pro-inflammatory cytokines. The cytokines primarily act indirectly by inducing production of RANKL, which stimulates osteoclast differentiation, osteolysis, and inflammatory bone loss. There is also considerable evidence that activation of macrophage Toll-like Receptors (TLRs) contributes to this cascade of events. It is however controversial whether bacterially-derived immunostimulatory molecules known as Pathogen-Associated Molecular Patterns (PAMPs) can contribute to aseptic loosening by stimulating their cognate TLRs on macrophages. Priming and subsequent activation of the NLRP3 inflammasome is essential for macrophage production of mature, active IL-1β in response to wear particles. We recently confirmed that wear particles can activate pre primed NLRP3 inflammasomes in the absence of PAMPs. Thus, activation of the NLRP3 inflammasome is the only macrophage-based event in the aseptic loosening cascade that we have found to date is independent of PAMPs. In contrast, priming of the NLRP3 inflammasome by wear particles requires PAMPs as well as their cognate TLRs. These results add to the growing body of evidence that bacterially-derived PAMPs can contribute to aseptic loosening.