Abstract
Mesenchymal stem cells (MSCs) are tissue-resident stroma cells capable of modulating immune cells through the secretion of paracrine factors. However, the comparison of MSCs potential, from different sources and submitted to hypoxia within a 3D scaffold, in secreting pro-healing factors has never been investigated. With a chemical composition similar to type I collagen, a major component of connective tissues retrieved in dental pulp, bone and umbilical cord, Hemocollagene® haemostatic foam presented porous and interconnected structure (> 90%) and a relative low elastic modulus of around 60 kPa. All these criteria meet basic requirements for tissue engineering based material. Herein, we assessed and compared the effect of hypoxia (3% O2) on the regulation and release of pro-angiogenic factors (VEGF, b-FGF and IL-8) from bone marrow (BM), Wharton's jelly (WJ) and dental pulp (DP) derived MSCs cultured in Hemocollagene®. After 10 days of culture, qRT-PCR analysis showed an up-regulation of b-FGF and VEGF mRNA in BM- and WJ-derived MSCs, but not in DP-derived MSCs. Furthermore, hypoxia highly up-regulated IL-8 expression in WJ-derived MSCs and moderately in both BM and DP-derived MSCs. In contrast, ELISA analysis showed a higher amount of VEGF and IL-8 in supernatant provided from DP-derived MSCs culture compared to BM and WJ-derived MSCs. B-FGF was not detected whatever the experimental condition. In conclusion, MSCs derived from several tissues were able to release pro-angiogenic factors under hypoxic conditions. There was no clearly superior type of MSCs for therapeutic use, however DP-derived MSCs are likely to be more advantageous.