Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

MOLECULAR CONTROL OF TENOCYTE PHENOTYPE THROUGH MATRIX-MEDIATED MECHANOTRANSDUCTION

The European Orthopaedic Research Society (EORS) 2018 Meeting, PART 1, Galway, Ireland, September 2018.



Abstract

During in vitro sub-culturing, tenocytes lose their phenotype which ultimately affects their functioning. As spindle-shaped fibroblasts, tenocytes have a unique thin elongated phenotype and they possess more spread-out shape through phenomena named dedifferentiation1. Given the link between cell shape and cell function, in this study, we first aimed to dedifferentiate tenocytes through in vitro sub-culturing in order to have a model system for dedifferentiation. For this, we isolated human flexor tendon cells from healthy female flexor digitorum longus and seeded at 5000 cells/cm2 cell density, passaged every two days for six passages. In order to assess cell phenotype, we fixed with 4% paraformaldehyde and stained with phalloidin and DAPI to visualize the actin cytoskeleton and DNA respectively. We noted that in each passage, cells lost their spindle-shaped phenotype and became more pancake-shaped. At passage 1 and 2, the main cell phenotype is spindle-shaped. However, as the cells are further passaged, the phenotype of the cell population becomes more heterogeneous and at passage 5 and 6, they already display a more spread-out shape. Based on these results, we further hypothesized that they can be re-differentiated through matrix-mediated mechano-transduction and regain their morphology and function. For this aim, we generated decellularized tendon from porcine Achilles tendon and setup a mechanical loading system where we can provide mechanical loadings at physiological levels. This system will provide a new approach on in vitro tenocyte culturing.


Email: