Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

31 – PREOPERATIVE MUSCLE ACTIVATION PATTERNS AFFECT IMPLANT MIGRATION



Abstract

Purpose: The goal of this study was to investigate if musculoskeletal activation patterns measured with electromyography (EMG) are predictive of migration of total knee replacements (TKR) measured with radiostereometric analysis (RSA).

Method: 37 TKR patients who were part of a larger randomized controlled RSA trial were recruited to this study. Study participants had been randomized to receive the Nexgen LPS Trabecular Metal tibial monoblock component (n = 19), or the cemented NexGen Option Stemmed tibial component (n = 18) (Zimmer, Warsaw IN). Ethics approval was received from the institutional review board. In the week prior to their surgery, the patients went to the dynamics of human motion laboratory and underwent EMG data collection. Surface electrodes were placed over the vastus lateralis, vastus medialis, rectus femoris, the lateral and medial hamstrings, and the lateral and medial gastrocnemius using standardized placements (Hubley-Kozey et al., 2006). The variability in subject EMG patterns was captured with a set of discrete scores that represented weightings on objectively-extracted features of the gait waveform data using principal component analysis (PCA). Within four days of surgery and at six months post-operatively, patients had bi-planar knee x-rays taken. RSA analysis was performed with MB-RSA (MEDIS, Leiden). RSA results were reported as maximum total point motion (MTPM), and six degrees of freedom translations and rotations at six months.

Results: A correlation was found between the third principle component of the lateral gastrocnemius muscle (representing high gastrocnemius activation in late stance) and the anterior migration of the component (R2=0.247 P=0.002). A correlation was found between the vastus medialis principle component three (representing low vastus medialis activation in late stance) and the anterior migration of the component (R2= 0.338, P=0.000). A stepwise regression model was developed for anterior migration of the tibial component. To reduce the number of terms in the model only the two EMG variables that were correlated with anterior migration, implant type and BMI were entered leaving four possible terms. The stepwise regression eliminated all variables but the lateral gastrocnemius and the vastus medialis. The regression equation was Anterior-Posterior Migration = 0.01 +0.12*Vastus Medialis PC3 + 0.074*Lateral Gastrocnemius PC3 (R2=0.487, R2 Adj=0.457, P< 0.0001)

Conclusion: It has previously been shown that anterior shear on the tibial component of TKR is temporally localized to the last third of stance phase of gait. Both the gastrocnemius and vastus muscle groups have the ability to produce large anterior posterior shear on an the knee during late stance. This result shows that variables which capture the temporal activation patterns of these muscles preoperatively are related to the migration of the tibial component of TKR postoperatively. This may have implications for rehabilitation of these patients.

Correspondence should be addressed to: COA, 4150 Ste. Catherine St. West Suite 360, Westmount, QC H3Z 2Y5, Canada. Email: meetings@canorth.org