Abstract
Degradable implants made of magnesium alloys as osteosynthesis material for weight-bearing bone are at present a main research area. With regards to biocompatibility, a MA with 0.8 wt.
% Calcium (MgCa(0.8)) has been shown to possess advantageous qualities. Long-term investigations in animal models however, showed that the degradation rate of this magnesium alloy was relatively rapid and therefore the mechanical properties decreased early during the implantation period. An implant for osteosynthesis in weight-bearing bones however needs to exhibit adequate stability during the first few weeks of fracture healing. This cannot sufficiently be assured by the MgCa(0.8) alloy. It has been suggested in the literature, that the degradation rate of MA could be reduced using a fluoride coating. Therefore it was the aim of this study to investigate, whether the coating of degradable MA MgCa(0.8) implants with magnesium fluoride layer leads to decreased degradation rate and in consequence to an improvement of the mechanical properties using an animal model.
Extruded pins (2.5 mm x 25 mm) of MgCa(0.8) were produced. Twenty of these pins were coated with a fluoride layer by submerging the implants in a bath with 40% hydrofluoric acid. With this procedure, the pins were covered with a thin (150–200μm thickness) MgF2 layer. Coated and uncoated pins were intramedullary implanted into both tibiae of ten New Zealand White Rabbits. Three and six months after surgery five animals of each group were euthanized and the tibiae were explanted for further analysis. Micro-computed tomography (μCT) and scanning electron microscopy (SEM) were performed of the explanted pins. In order to investigate changes of the mechanical properties, 3-point bending tests were carried out with MgCa(0.8) pins at the initial state and with the explanted pins, with and without the fluoride layer at both times. In addition, the mass loss of the pins was determined. To evaluate the degradation process of the MgCa(0.8) pins with the MgF2 layer, micrographs and element analyses (EDX) were accomplished after the three point bending tests.
During the investigation period, the rabbits showed no signs of lameness or pain. The MgCa(0.8) alloy and the MgCa(0.8) alloy with the MgF2 layer showed significant differences regarding the mechanical properties in dependence of the implantation duration. Generally, the mechanical resistance decreases with increasing implantation time. The 3-point bending test showed, that the values of maximal force of the coated MgCa(0.8) implants after three month implantation duration were lower than those of the uncoated implants. After an implantation duration of six months, the values of maximal force of the implants coated with MgF2 were higher than those of the uncoated implants. Regarding the implant mass, the coated and uncoated MgCa(0.8) implants showed a loss of mass during the implantation period. The mass loss of the coated implants was only slightly lower. This difference was minor after three months and more obviously after six months. With μCT new endosteal bone formation could be seen close to all implants. A decrease of the cross section dimension could be demonstrated with μCT and SEM and changes of the surfaces due to pitting corrosion could be demonstrated in both the coated and uncoated MgCa(0.8) implants on the whole length, which was more obvious after six months. The micrographs showed corroded surfaces but not preferred corrosion on the grain boundaries. The element analysis showed a degradation layer on the implant surface, which was more bulky on implants after six month implantation duration. The mapping shows, that the fluoride molecules are clearly visible after three and six months around the margin of the implant.
With the results of this study it could be demonstrated, that the coating of the MgCa(0.8) implants with a flouride layer did not have a positive influence on the mechanical properties and the degradation rate of the implant in the bone. This leads to the conclusion that MgF2-coated MgCa(0.8) implants are also not suitable for osteosynthesis in weightbearing bones.
Correspondence should be addressed to Diane Przepiorski at ISTA, PO Box 6564, Auburn, CA 95604, USA. Phone: +1 916-454-9884; Fax: +1 916-454-9882; E-mail: ista@pacbell.net