Abstract
Joint Registries are a valuable resource for defining the survivorship of prostheses and procedures undertaken for the treatment of joint disease. However, the use of this data as a basis for advocating specific implant designs is controversial because of the confounding effects of variations in patient selection, the training, skill and experience of surgeons, and the priorities of individual patients. Despite these challenges, the Australian Joint Registry has utilized its early survivorship data to identify specific designs that are expected to exhibit lower than average durability in the long term. The aim of this study was to assess the accuracy of this practice in identifying implants providing inferior long-term performance.
Over the period 2004–8, the Australian Registry identified 48 prosthetic components used in primary THA, HRA, TKA or UKA which exhibited a statistically significant increase in the early revision rate. For each of these components, we compared the rate of revisions per 100 “component-years” when it was first identified by the Registry, to its ultimate fiveyear cumulative survival in 2008. These survival parameters were also compared to average values based on procedure (eg.THR) and fixation method (i.e. cemented, cementless, hybrid).
Regression analysis was performed to determine the accuracy of initial relative revisions per 100 OCY as a predictive measure of eventual component revision rate.
Five year survival data was available on 30 of the 48 implants identified by the registry. There was a strong correlation (R2=0.9614) between initial revisions per 100 component-years and the 5-yr survival of the identified designs. 29 of 30 designs (97%) exhibited lower than average survivorship at 5 years. Six designs (20%) had failure rates within 2% of average values, and 7 (23%) had a 5–year failure rate less than 50% above average values. Although, when identified by the Registry, 80% of identified components exceeded the average rate of revision by 100%, only 60% displayed more than twice the cumulative revision rate at 5 years post-op.
These results demonstrate that early data collected by Joint Registries can form the basis of accurate identification of designs which ultimately prove to be clinically unsuccessful. Predictions made by the Australian Registry concerning inferior designs have an accuracy of approximately 80%. Further work is recommended to enhance the valuable potential of Registry data in predicting the outcome of both implants and procedures.
Correspondence should be addressed to Diane Przepiorski at ISTA, PO Box 6564, Auburn, CA 95604, USA. Phone: +1 916-454-9884; Fax: +1 916-454-9882; E-mail: ista@pacbell.net