Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

A828. BIOMECHANICAL ANALYSIS OF POSTERIOR CRUCIATE LIGAMENT RETAINING HIGHFLEXION TOTAL KNEE ARTHROPLASTY



Abstract

High-flexion knee replacements have been developed to accommodate a large range of motion (ROM > 120°) after total knee arthroplasty (TKA). Femoral rollback or posterior translation of the femoral condyles during knee flexion is essential to maximise ROM and to avoid bone-implant impingement during deep knee flexion. The posterior cruciate ligament (PCL) has been described as the main contributor to femoral rollback. In posterior-stabilised TKA designs the PCL is substituted by a post-cam mechanism. The main objective of this study was to analyse the mechanical interaction between the PCL and a highflexion cruciate-retaining knee replacement during deep knee flexion. For this purpose, the mechanical performance of the high-flexion cruciate-retaining TKA design was evaluated and compared with two control designs including a highflexion posterior-stabilised design.

Materials & Methods: Prosthetic knee kinematics and kinetics were computed using a three-dimensional dynamic finite element (FE) model of the knee joint. The FE knee model consisted of a distal femur, a proximal tibia and fibula, a quadriceps and patella tendon, a non-resurfaced patella, TKA components and a posterior cruciate ligament in case cruciate-retaining designs were evaluated. Tibio-femoral and patello-femoral contact were defined in the FE knee model and the polyethylene insert was modelled as a non-linear elastic-plastic material. Three different rotating platform TKA systems were analysed in this study: the high-flexion cruciate-retaining PFC Sigma CR150, the high-flexion posterior-stabilised PFC Sigma RP-F and the conventional cruciate-retaining PFC Sigma RP (Depuy, J& J, UK). Both the polyethylene stress characteristics and the tibio-femoral contact locations were evaluated during a squatting movement (ROM = 50° – 150°).

Results: During deep knee flexion (ROM > 120°), the high-flexion cruciate-retaining TKA design showed a lower peak contact stress (74.7 MPa) than the conventional cruciate-retaining design (96.5 MPa). The posterior-stabilized high-flexion TKA design demonstrated the lowest peak contact stress at the condylar contact interface (54.2 MPa), although the post was loaded higher (77.4 MPa). All three TKA designs produced femoral rollback in the normal flexion range (ROM ≤ 120°), whereas the cruciate-retaining designs showed a paradoxical anterior movement of the femoral condyles during high-flexion.

Discussion: PCL retention is a challenging surgical aim and affects the prosthetic knee load and kinematics as shown in this study. In addition, for adequate functioning the PCL should not be too tight or too lax after surgery. Hence, we investigated the effect of PCL laxity on the prosthetic performance and the best-balanced PCL was used in our simulations. Although PCL balancing is not an issue for posterior-stabilized TKA, we found the tibial post to be loaded relatively high for this implant type.

Correspondence should be addressed to Diane Przepiorski at ISTA, PO Box 6564, Auburn, CA 95604, USA. Phone: +1 916-454-9884; Fax: +1 916-454-9882; E-mail: ista@pacbell.net