Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

A548. DO RESTING PERIODS INFLUENCE POLYETHYLENE WEAR IN KNEE SIMULATOR STUDIES?



Abstract

Knee wear simulator studies are performed to evaluate wear behavior of implants.

Simulation of the human gait cycle is often carried out continuously, without considering resting periods as they are part of patient’s daily live. In addition to dynamic activities like walking, daily activities also consist of static periods like standing, sitting or lying. During the day dynamic activities alternate continuously with static periods and most of the day is spent in passive periods, where no joint motion occurs. Such resting periods have not yet been considered in prosthetic knee wear tests. Implementing resting periods may cause an increase in friction and thus increased wear of the implant. The aim of the current study was to determine if the implementation of resting periods would increase polyethylene (PE) wear in total knee replacement (TKR).

Two wear studies were conducted using a force controlled AMTI knee simulator on a conventional bicondylar TKR. For the first study, simulation was carried out continuously according to ISO 14243-1. For the second test, four active gait cycles according to ISO 14243-1 were followed by one resting period cycle. In both tests 5x10E6 active load cycles at a frequency of 1 Hz (resulting in additional 1.25x10E6 pause cycles for the second test) were applied. Wear was measured gravimetrically and wear scars were documented photographically.

The mean wear rates measured 2.85 ± 0.27 mg/10E6 cycles for the ISO test without considering resting periods and 2.27 ± 0.23 mg/10E6 cycles for the test with resting periods implemented. There was no significant difference (p=0.22) in wear rate between both tests.

The inserts showed similar wear scars in both tests and no relevant differences in dimension and localization on the surface. Therefore the wear behavior after the two tests was similar.

Since wear is one of the most limiting factors for implant longevity, proper preclinical wear studies are essential. Based on the results of this experimental wear study, a continuous simulation without additional resting periods seems to be valid in wear simulation of TKR.

Correspondence should be addressed to Diane Przepiorski at ISTA, PO Box 6564, Auburn, CA 95604, USA. Phone: +1 916-454-9884; Fax: +1 916-454-9882; E-mail: ista@pacbell.net