Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

A1160. PRECLINICAL EVALUATION OF A PYROCARBON CERVICAL TOTAL DISC REPLACEMENT



Abstract

An unconstrained, articulating pyrocarbon cervical total disc replacement (TDR; Rescue, Biomet, US) has been developed. Pyrocarbon is a chemically inert form of carbon with an elastic modulus similar to bone. The long-term durability and wear resistance of pyrocarbon has been demonstrated in other orthopaedic devices. The purpose of this study was two-fold: to compare the wear of identical disc reaplcements fabricated from cobalt chrome (CoCr) and ultrahigh-molecular-weight-polyethylene (UHMWPE) to pyrocarbon and to compare the motion at index and motion segments before and after Rescue TDR.

Ten pyrocarbon and three CoCr-UHMWPE TDRs were subjected to 10 million cycles in 20 degrees of flexion–extension with 155N axial load in serum solution at 4.0Hz. One additional CoCr-UHMWPE couple was immersed in serum and loaded to 155 N. TDRs and serum solution were examined at 0, 2.5, 5, 7.5 and 10 million cycles to characterize wear. The surfaces were measured with a coordinate measuring machine prior to and after 10 million cycles. Serum solutions and time controlled serum-only controls were characterized for the quantity of wear debris using particle analysis. Nine cadaver cervical spines were placed through dynamic 2Nm cycles of flexion, extension, and lateral bending. Electromagnetic sensors recorded the motion of each vertebral body in response to applied loads. Total range of motion at the index and adjacent levels were determined for the intact spine and after TDR.

There was no significant difference in the pyrocarbon surface geometry after 10 million cycles or in the number of particles generated during testing compared to baseline (p > 0.05).

However, CoCr-UHMWPE devices displayed classic patterns of total joint wear. CoCr-UHMWPE wear couples had an initial increase in serum particles, followed by lower particle producing rates that gradually increased. The difference in mean UHMWPE wear particles at each interval was significantly greater than with the pyrocarbon TDR (all p< 0.05).

The mean total and dynamic ranges of flexion-extension and lateral bending after implantation of the Rescue TDR at the index level were not statistically significantly different from that of the intact spine (ANOVA: p > 0.05). Similarly, at the superior and inferior adjacent levels, the mean total and dynamic range of flexion-extension and lateral bending after implantation of the Rescue device were not statistically significantly different from the intact spine (ANOVA: p > 0.05).

Correspondence should be addressed to Diane Przepiorski at ISTA, PO Box 6564, Auburn, CA 95604, USA. Phone: +1 916-454-9884; Fax: +1 916-454-9882; E-mail: ista@pacbell.net