header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

ENGINEERING CARTILAGE LIKE STRUCTURE USING POROUS SCAFFOLD AND DIFFERENT HUMAN CELLS



Abstract

Introduction: Articular cartilage has limited capacity for regeneration. Tissue engineering strategies offer future hope for cartilage replacement and repair. In an attempt to mimic functional native cartilage for tissue repair, current research focuses on construct/implant designs that simulate an embryonic like microenvironment to promote cellular differentiation along a chondrogenic lineage. The aim of the present study was, for the first time, to illustrate the differences between human neonatal and adult chondrocytes along with bone marrow stromal cells (HBMSCs) to differentiate the factors that promote chondrogenesis and maintain functional homeostasis.

Material and Methods: Adult chondrocytes, neonatal chondrocytes and HBMSCs were cultured in monolayers for 1, 2 and 3 weeks in basal or chondrogenic media. Expression of transcription factor Sox9, Aggrecan (ACAN) and Collagen type II (COL2A)was compared via real time polymerase chain reaction (q-PCR). Alternatively, cells were seeded onto 3D PLGA scaffolds and cultured in vitro for 3 and 6 weeks in basal or chondrogenic media. Paraffin sections of the constructs were stained with Alcian blue/ Sirius red and expression of Collagen type II and Aggrecan was visualised via immunohistochemistry.

Results: For monolayer cultures of all three cell types, at week 1, expression of all three genes was down regulated in basal medium compared to levels in chondrogenic medium. By week 2, q-PCR revealed an increased expression of Col2A in chondroinduced neonatal chondrocytes compared to adult chondrocytes and HBMSCs. A steady increase in SOX9 expression was observed with time in all three cell types in chondrogenic medium. However, SOX9 expression in week 2 was higher for each cell type in basal medium compared with chondrogenic medium. ACAN expression by HBMSCs was greatly enhanced compared with that of neonatal and adult chondrocytes after 2 weeks in chondrogenic medium. By week 3, basal cultures of all cell types showed an overall lower level of gene expression compared with chondroinduced cells. 3D constructs revealed the formation of cartilage like tissue for all three cell types with the presence of a prominent superficial layer and middle zone in the chondroinduced constructs. A superficial layer was also observed in constructs cultured in basal media but there was no evidence of any other characteristic zones. A fibrous capsule had formed around the chondroinduced tissue by week 6. Thinnest capsules were observed for constructs seeded with neonatal cells, with thickest capsules in constructs seeded with HBMSCs. Immunohistochemistry revealed a greater presence of aggrecan and type II collagen in the chondroinduced constructs compared to those cultures in basal media.

Conclusion: This comparative study indicates a major difference between the microenvironment of human neonatal chondrocytes, adult chondrocytes and HBMSCs. The expression of high amounts of COL2A and ACAN (considered to be middle to late markers in chondrogenesis) in week 1 in neonatal chondrocytes indicates a difference in temporal gene expression during chondrogenesis or in maintaining cartilage homeostasis. The study provides potentially useful information to inform cell-based therapies for cartilage regeneration.

Correspondence should be addressed to Miss B.E. Scammell at the Division of Orthopaedic & Accident Surgery, Queen’s Medical Centre, Nottingham, NG7 2UH, England

Acknowledgement: PhD studentship from Smith & Nephew plc.