Abstract
Bone marrow cells are well known for improving healing. Recent studies report that stromal cell-derived factor-1 (SDF-1) and its receptor CXC chemokine receptor 4 (CXCR4) play roles in stem cell homing and are related to short-term and long-term engraftment. SDF-1 secreted from an injured organ can pass the endothelium barrier in a CXCR4-dependent manner into the bone marrow and recruit hematopoietic progenitors to the circulation. There is evidence to show that SDF-1 also has chemoat-tractive effects and is able to recruit mesenchymal stem cells and osteoprogenitors. Our previous study also showed that SDF-1 has an enhanced effect on osteoblas-tic differentiation of human mesenchymal stem cells. The purpose of this study is to investigate the effects of genetically modified bone marrow cells that overexpress SDF-1 on bone fracture healing in rat model. The hypothesis is that genetically modified rat bone marrow cells (rBMCs) that over expresses SDF-1 will enhance the fracture healing process compared to non-treated groups or to groups treated with only rBMCs. rBMCs were harvested from femora of young male Wistar rats. rBMCs were expanded ex vivo, and cells of passage 3 were used in the experiment. SDF-1 over-expressing rBMCs (rBMC-SDF-1) were engineered by infection of adenovirus carrying human SDF-1 gene at the multiplicity of infection (MOI) 500. Eighteen adult female Wistar rats were divided into three groups with 6 rats in each group:
-
rBMC-SDF-1,
-
rBMC and
-
control.
A 3mm gap in the middle of femur was created during surgery and stabilized by an external fixator. In two groups three hundred thousand rBMCs or rBMCs-SDF-1 were seeded into a collagen sponge and transplanted into the gap. For the control group, sponges without cells were used. Rats were sacrificed 3 weeks after operation and the femora were harvested. Bone mineral content within the gap was measured immediately after operation and compared with the bone mineral content within the same gap at the third week by dual energy X-ray absorptiometry (DEXA) scanning. The area of new bone formation was measured using histomorphometery on H& E stained sections and quantified by imaging analysis system. In the present study, the rBMC-SDF-1 group showed the most dominant influence in both new bone formation and bone mineral increase. rBMC-SDF-1 not only increases new bone formation but also has higher bone mineral content after 3 weeks compare with the rBMC only. This bone healing progress may due to the enhanced local SDF-1/CXCR4 interaction that recruited more host’s stem cells into the fracture site. The control group showed an increased new bone formation in the histological analysis but a reduced bone mineral content after 3 weeks whereas in comparison the rBMC group showed a similar new bone area to the control group but a significantly higher bone mineral content. This may indicate a faster bone repairing ability with the BMCs. Both rBMC and rBMC-SDF-1 groups have a higher bone mineral content and a more compact new bone structure that may indicate an accelerate effect of rBMC in the bone mineralization. In this study, we show that SDF-1 induces improved bone formation in early fracture healing.
Correspondence should be addressed to Miss B.E. Scammell at the Division of Orthopaedic & Accident Surgery, Queen’s Medical Centre, Nottingham, NG7 2UH, England