Abstract
Introduction: Anterior Cruciate Ligament (ACL) is primary constrain to anterior displacement of tibia with respect to the femur and secondary to internal/external (IE) and varus/valgus (VV) rotations; an ACL reconstruction should thus control not only AP but also IE and VV laxities. For this reasons, more attention has given to residual rotational instability. This study aims to verify if those subjects with high of pre-op knee laxities has also high post-op laxity after an ACL reconstruction.
Material and Methods: The study includes 115 patients, that underwent ACL reconstructions between January 2005 and September 2007. Patients with associated severe ligaments tears or severe chondral defects were excluded. The joint passive kinematics was intra-operatively assessed using the BLU-IGS system (Orthokey, Delaware). We evaluated, before and after the reconstruction, the manual maximum IE rotation at 30° and 90° of flexion, VV rotation at 0° and 30° of flexion and AP displacement at 30° and 90° of flexion. We used the k-means algorithm applied to pre-op values to create two groups among the patients: the GROUP H, with higher pre-op laxity and the GROUP L, with lower pre-op laxity. The pre-op groups were compared for each test using independent Student’s t-test (p=0.01) in order to assess their difference. Student’s t-test (p=0.01) was performed on the corresponding post-op values in order to verify if the difference between H and L was maintained after the reconstruction.
Results: Mean pre-op VV at 0° was 7.1±0.9° for group H and 4.7±0.8° for group L (p< 0.01), post-op was 3.2±0.8° for group H and 2.5±0.8° for group L (p< 0.01). Mean pre-op VV at 30° was 6.2±1.5° for group H and 3.4±0.7° for group L (p< 0.01), post-op was 3.4±1.3° for group H and 2.2± 0.9° for group L (p< 0.01). Mean pre-op IE at 30° was 28.3±3.5° for group H and 19.2±3.1° for group L (p< 0.01), post-op was 21.5±3.8° for group H and 14.7±3.7° for group L (p< 0.01). Mean pre-op IE at 90° was 31.3±2.8° for group H and 22.4±3.5° for group L (p< 0.01), post-op was 22.3±4.0° for group H and 17.0±4.4° for group L (p< 0.01). Mean pre-op AP at 30° was 14.5±2.1mm for group H and 8.9±1.6mm for group L (p< 0.01), post-op was 6.2±1.6mm for group H and 4.2±1.6mm for group L (p< 0.01). Mean pre-op AP at 90° was 11.2±1.7mm for group H and 6.7±1.4mm for group L (p< 0.01), post-op was 5.4±1.8mm for group H and 3.4±1.3mm for group L (p< 0.01).
Discussion: The comparison between group H and group L showed that those patients with higher pre-op laxity had maintained higher post-op values mainly for all the tests. This finding is probably correlated to the possible presence of different tears affecting soft structures of the joint and to the proper and specific anatomy of each patient.
Correspondence should be addressed to: EFORT Central Office, Technoparkstrasse 1, CH – 8005 Zürich, Switzerland. Email: office@efort.org