Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

7.O.03 RISK PROFILING FOR BONE METASTASIS AND BREAST CANCER: THE INFLUENCE OF THE 1498 C/T POLYMORPHISM OF THE VASCULAR ENDOTHELIAL GROWTH FACTOR (VEGF)



Abstract

Introduction: Breast cancer is the most frequently diagnosed cancer in western countries and bone metastases of breast cancer cause significant morbidity. Tumor growth and progression requires the formation of new blood vessels, a process called angiogenesis. Angiogenesis is a complex multifactorial process involving a variety of proangiogenic and proteolytic enzyme activators and inhibitors. The most important regulator of angiogenesis is vascular endothelial growth factor (VEGF), which is overexpressed in several tumor tissues. The single nucleotide polymorphism 1498 C/T of VEGF was associated with increased plasma levels of VEGF. In this case controlled study, we analyzed the role of this polymorphism in bone metastasis of breast cancer.

Material and Methods: We genotyped 839 female breast cancer patients. The study was performed according to the Austrian Gene Technology Act and has been approved by the Ethical Committee of the Medical University Graz. According to breast cancer staging, patients were divided in three groups, representing patients without metastases (n = 708), those with metastases other than bone (n = 69), and those with bone metastasis (n = 62). Results: Frequency of the 1498 CC genotype of VEGF was significantly lower among patients with bone metastases (6.5%) than among those with other metastases (23.2%; p=0.005) or no metastases (23.4%; p=0.002). Odds ratio of the CC genotype for bone metastases was 0.22 (95% CI 0.08 – 0.61; p = 0.004). Conclusion: We conclude that the homozygous 1498 C genotype of VEGF may be protective against development of bone metastasis in breast cancer patients.

Correspondence should be addressed to Professor Stefan Bielack, Olgahospital, Klinikum Stuttgart, Bismarkstrasse 8, D-70176 Stuttgart, Germany. Email: s.bielack@klinikum_stuttgart.de