Abstract
High tensile stress has been considered as a contributing factor to the rim fracture of polyethylene acetabular cup liner. We performed the 3 D Finite Element Analysis (FEA) to compare the stress patterns at the polyethylene liner rim as a function of polyethylene thicknesses and whether or not rim was supported by the titanium acetabular shell extension. Two 3.1 mm thick generic 52 mm titanium alloy acetabular shells with and without 2 mm high rim support extension were modelled. Six corresponding Ultra High Molecular Weight Polyethylene (UHMWPE) liners with inner bearing diameters ranging from 22 mm to 44 mm and same outer diameters, were fixed in the shells. A 2 450 N load was applied through the corresponding CoCr femoral heads to the rims of liners while the acetabular shells were fixed on the outer spherical surface. The FEA was performed in half body of the assembly. The maximum principal stresses at the rim regions of UHMWPE liners were recorded.
The results showed that in all rim supported conditions, the maximum principal stress were in compressive patterns, a preferred pattern to reduce the potential polyethylene liner fracture. In rim unsupported conditions, the stresses was in tensile on the internal bearing surface when polyethylene liner thickness was bellow 5 mm, or was bellow 9 mm if the average maximum principal stress cross the rim was considered.
We conclude that the metal rim support changes the stress pattern in the rim region of UHMWPE liner to compressive for all liner thicknesses. The stress pattern turns to tensile, or there will be a higher potential for rim fracture, if UHMWPE liner is unsupported and the polyethylene rim thickness is less than 9 mm.
Although components used this study did not include the locking details which add higher stress concentrations, the trend of stress patterns should follow the results found in this study.
Correspondence should be addressed to EORS Secretariat Mag. Gerlinde M. Jahn, c/o Vienna Medical Academy, Alserstrasse 4, 1090 Vienna, Austria. Fax: +43-1-4078274. Email: eors@medacad.org