Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

EFFECTS OF HEPARIN ON HUMAN PERIPHERAL BLOOD MONOCYTES-DERIVED OSTEOCLASTOGENESIS



Abstract

Osteoporosis is one of the most common diseases in modern aging society. Receptor activator of nuclear factor-κB ligand (RANKL) plus macrophage colony stimulating factor (M-CSF)-mediated osteoclastogenesis has been recently implicated in the pathogenesis of this disease. Among other causes, the anticoagulant drug heparin is a notable inducer of secondary osteoporosis, although the molecular pathway underlying this process, particularly in human model, has not been clarified yet. Recently, we reported the differentiation of two subtypes of osteoclasts starting from human peripheral blood CD14-positive monocytes (Monocytes), respectively fusion regulatory protein-1 (FRP-1/CD98)-mediated osteoclasts and RANKL+M-CSF-mediated osteoclasts. We, therefore, investigated in details effects of heparin on differentiation and activation using a simple system of human osteoclastogenesis.

When Monocytes were cultured with osteoclastogenesis-relating factors and a high dose of heparin, heparin suppressed osteoclastogenesis in both pathways. However, a proper quantity of heparin enhanced tartrate-resistant acid phosphatase-positive multinucleated giant cell formation. There were significant differences in fusion indices between control osteoclasts and osteoclasts stimulated by moderate concentrations of heparin in two systems (P< 0.05). As a result of osteoclastic activity, FRP-1-mediated osteoclasts treated with a proper quantity of heparin formed larger pits on Ca plates. Moreover, lacunae on dentin surfaces induced by FRP-1-mediated osteoclasts were enhanced with moderate concentration of heparin. In contrast, heparin did not increase pit-formation area on Ca plates and on dentin surfaces by RANKL+M-CSF-mediated osteoclasts. Evaluating the relation between the concentration of heparin and the osteolytic areas on Ca plates, Pearson’s correlation coefficient of the FRP-1 and the RANKL+M-CSF were −0.973 (P< 0.05) and −0.695 (P=0.19), respectively.

In present study, although moderate doses of heparin stimulated differentiation in both systems, in osteoclastic activity, heparin promoted only to the FRP-1 system, not to RANKL+M-CSF system. Our results suggested FRP-1-induced osteoclastogenesis mainly contributes to development of heparin osteoporosis and also that the onset mechanism after long-term administration of heparin may be affected by the characteristic bone resorption ability of FRP-1osteoclasts.

Correspondence should be addressed to EORS Secretariat Mag. Gerlinde M. Jahn, c/o Vienna Medical Academy, Alserstrasse 4, 1090 Vienna, Austria. Fax: +43-1-4078274. Email: eors@medacad.org