Abstract
The cement-in-cement femoral revision is a possible method of reducing complications. During recent research on this revision it was observed that a number of the inner cement contained macropores. It was hypothesized that porosity of the mantle influenced the subsidence and inducible displacement of the revision stems. The aim was to calculate the porosity and assess its relationship to the above factors.
Primary cement mantles were formed by cementing a stem into sections of tubular steel. At this stage, the specimen was chosen to be in a test or a control group. If in the test group, it underwent a fatigue of 1 million cycles. This was carried out in a fatigue machine mounted with a specifically designed rig. If in the control group, no such fatigue was undertaken. Into these fatigued and unfatigued mantles, the cement-in-cement procedure was performed. Both groups underwent a fatigue of again 1 million cycles. Subsidence and inducible displacement was recorded. The composites were then sectioned and photographed. The images underwent image analysis to calculate the porosity.
Multiple regression and a general linear model showed subsidence was inversely correlated to the porosity of the “fresh cement” in Gruen zones 3 and 5 (p = 0.021, R2 = 0.36). This relationship was not expected. The reason could be related to the fact that the migration of the stems in each separate direction was not monitored. Inducible displacement was inversely correlated to porosity of the inner cement, again in Gruen zones 3 and 5 (p = 0.001, R2 = 0.61). A possible explanation is that the stem was able to subside more due to the higher porosity and find a more stable position.
The subsidence and inducible displacement of these stems is influenced by porosity, specifically by the porosity of the distal inner cement.
Correspondence should be addressed to EORS Secretariat Mag. Gerlinde M. Jahn, c/o Vienna Medical Academy, Alserstrasse 4, 1090 Vienna, Austria. Fax: +43-1-4078274. Email: eors@medacad.org