Abstract
Aims: Hydroxyapatite coatings have been proven to improve the osteointegration of metal implants however they are not stable and they might delaminate from the metal surface when challenged by the mechanical stresses experienced by the implant. Therefore, efforts of different researchers are being devoted to find more stable coatings or surface treatments that could replace HA.
In particular, spontaneous calcium phosphate deposition on titanium surfaces from aqueous electrolyte containing calcium and phosphate ions, such as simulated body fluid solutions, has been observed and is believed to be related to the excellent bonding capability in contact with bone tissue.
In the present study, a new multiphase anodic spark deposition (ASD) method combined with chemical etching is presented It has been optimized and such modified titanium surface exhibited high mineralisation potential, selective protein adsorption, quicker and more intensive osteoblasts adhesion and differentiation. Such treatements was labelled BioSpark™ and consisted in a thick calcium-phosphate-doped oxide film growth on the titanium bulk. This oxide layer exhibits anatase lattice, micro-porosity and a thin nano-roughened texture.
Methods: The effect of this process, was investigated invitro and in vivo in cortical and spongy bone of 12 adult sheep. Histomorphometric and microhardness measurement were carried out at each experimental time (4, 8, 12 weeks) to quantify the bone-to-implant contact around the implants, the bone ingrowth as well as the newly bone hardness and bone maturation index
Results: Data suggests that the BioSpark treatment produces a modification of the Ti surface, which represents good bioactivity and may be suitable for achieving a stable implant osseointegration.
Conclusions: Such surface modification treatments was applied in the last two years on dental implants with great success and is now being tested in human being for histological studies. In the future, it will be applied on orthopaedic prostheses devices in order to improve device osteintegration. The data demonstrate that this type of surface improves the material osteointegration potential when compared to conventional surfaces while offering high mechanical stability.
The abstracts were prepared by incoming Professor Elena Brach del Prever. Correspondence should be addressed to IORS – President office, Dipartimento di Traumatologia, Ortopedia e Mediciana del Lavoro, Centro Traumatologico Ortopedico - Via Zuretti, 29 I-10135 Torino, Italy.