Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

QUANTIFICATION OF MATRIX-COMPONENT GENE EXPRESSION IN MONOLAYER EXPANDED CHONDROCYTES



Abstract

Articular cartilage (AC) has a poor innate healing capacity following significant injury. Autologous chondrocyte implantation is a repair technique which utilises in vitro-expanded chondrocytes combined with a periosteal patch. The chondrocytes are enzymatically digested from arthroscopically harvested tissue at an initial surgery and expanded in monolayer culture prior to implantation at a second procedure. Unfortunately, in vitro expanded chondrocytes appear unable to retain their fundamental phenotype resulting in dedifferentiated cells which produce a matrix of inferior quality. This study compares the matrix-component gene expression profiles of chondrocytes in their native chondrons and through multiple divisions in monolayer culture. We hypothesised that there would be a rapid decline of matrix-component gene expression within a few cell replications in monolayer culture. The goal is to understand more fully the process of chondrocyte dedifferentiation and to compare matrix-component gene expression during cellular expansion in vitro.

Human AC was obtained from tissue donors and operative patients. A portion of the AC was stored at −80°C for use as a control while the remainder was homogenised and enzymatically digested with collagenase. The released cells were plated in monolayer culture and passaged (2:1) when they approached confluence. RNA was extracted from the frozen cartilage control and the passaged chondrogenic cell lines from which cDNA was generated. Real time PCR was performed with primers specific for collagen I, collagen II, aggrecan, and GAPDH. Gene expression was quantified and profiles from the cells in their native chondron and passaged cells (p0-p9) were compared.

Cells, when removed from the extra-cellular matrix and plated in monolayer, experienced an immediate upregulation of collagen I which persisted throughout all passages. In contrast, there was a stepwise decrease in collagen II with each successive passage until p8-p9 when the expression became undetectable. Aggrecan expression only decreased minimally as the cells were passaged.

Rapid dedifferentiation of monolayer cultured chondrocytes is a persistent barrier to AC tissue engineering including ACI. This study quantified the expression of relevant genes relating to AC generation and is an important first step to understanding cellular events, as alternative expansion techniques and cellular alternatives are sought.

Correspondence should be addressed to: Cynthia Vezina, Communications Manager, COA, 4150-360 Ste. Catherine St. West, Westmount, QC H3Z 2Y5, Canada