Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

INTRAOPERATIVE 3-D IMAGING- VALUE AND CONSEQUENCES IN 250 CLINICAL CASES



Abstract

Introduction: Intraoperative visualisation of anatomic joint line reduction and hardware placement is techniqually demanding, twodimensional c-arm imaging do not always allow acute decision making about remaining articular steps and hardware misplacement. Postoperatively identification of these failures may need extensive revison surgery and is costly. The new mobile Iso-C3D imaging device provides intraoperative multiplanar reconstructions, consequently immediate decision making becomes possible.

Materials and Methods: 250 different joint fractures were intraoperatively scanned with the Iso-C3D (ankle fractures; forefoot, calcaneus; pilon tibiale; tibia plateaus; wrists; spine; pelvic fractures). Multiplanar reconstructions were obtained from 100 fluoroscopic images the Iso-C-3D provides during one automatic scan protocol. Decisions about remaining articular steps and implant misplacements were compared with the knowledge of conventional c-arm images which were done before. If necessary directly intraoperative corrections were performed.

Results: In 43 clinical cases (17%) a direct intraoperative correction resulted in implant change (8%) or correction of reduction (9%), caused by articular steps > 2mm, screw or k-wire misplacement. In all those cases conventional c-arm images did not reveal the significant step or misplacement, correction decision were all based on the Iso-C3D imaging in those cases. In other (9%) significant steps or misplacements were identified in c-arm images and confirmed with the Iso-C3D images.

Discussion: With the new intraoperative three dimensional imaging device a direct introperative idenfication of remaining intraarticular steps and implant misplacements becomes possible. Missed steps and misplacements can be avoided and reduction of operative revison rates might result.

Correspondence should be addressed to Ms Larissa Welti, Scientific Secretary, EFORT Central Office, Technoparkstrasse 1, CH-8005 Zürich, Switzerland