Abstract
A biomechanical study assessing compressive failure load, strength and stiffness with three different interbody device shapes was performed in human cadaveric vertebrae. The custom-made interbody devices had similar cross-sectional areas and specimens were tested with 20% or 40% coverage of indentor to endplate area. Axial compressive load was applied at 0.2mm/s to a depth equivalent to 20% of the vertebral height. The clover-leaf shaped device resulted in significantly higher failure load, strength and stiffness over the elliptical and the kidney shaped devices for both areas of coverage. The clover-leaf shaped devices extended over stronger periphery regions of the endplates and resulted in stronger interface properties.
To determine if two novel interbody cage shapes, the kidney and the clover-leaf, are biomechanically superior to a standard elliptical shape of similar cross sectional area.
Uniaxial compression tests with unrestricted rotations were carried out on the superior endplates of forty-eight thoracolumbar (T9-L2) vertebrae with one of three shaped indentors covering 20% or 40% of the endplate area. Compressive load was applied using a servohydraulic testing machine at 0.2mm/s, to depth equivalent to 20% of the vertebral height. Failure load, strength and stiffness were compared.
The clover-leaf shaped indentors resulted in higher failure load (53% average increase), higher strength (67% average increase) and higher construct stiffness (43% average increase), and these results were significant (p< 0.05). Larger indentor coverage area of 40% also resulted in significantly higher failure loads over 20% coverage (75% average increase).
Current elliptical interbody devices are placed over the central region of the endplate, which is also the weakest. A clover-leaf shaped device extended over the stronger peripheral regions of the endplates and resulted in improved bone-implant interface properties. This implant if implemented in vivo could potentially reduce implant subsidence and lead to better long-term outcomes in osteoporotic patients.
The novel clover-leaf shaped indentor displayed superior bone-implant interface properties. Larger interbody devices should be used when possible to improve interface properties.
Implant subsidence in osteoporotic patients could be significantly reduced with a clover-leaf shaped device, leading to better long-term outcomes.
Funding: Funding from the Canadian Institutes for Health Research.
Correspondence should be addressed to Cynthia Vezina, Communications Manager, COA, 4150-360 Ste. Catherine St. West, Westmount, QC H3Z 2Y5, Canada