Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

EVALUATION OF THE USE OF CALCIUM SULFATE HA/TCP COMPOSITES IN A CANINE METAPHYSEAL DEFECT MODEL



Abstract

The purpose of this study was to evaluate trabecular bone response to four different synthetic graft materials (CaSO4 and CaSO4 – HA/TCP composites) as compared to autograft in a canine defect model. The group with the highest HA/TCP proportion (and the lowest CaSO4 proportion) had the greatest amount of residual graft material and total mineralized material (p< 0.05). Increasing the proportion of HA/TCP reduces the rate of dissolution, and appears to have little effect on bone formation. This study suggests that a range of composites could be created to match the spectrum of resorption rates demanded by clinical applications.

Calcium sulfates and phosphates have become popular clinically for use as bone graft substitutes, however, their in-vivo performance has not been well characterized. The purpose of this study was to evaluate trabecular bone response to four synthetic graft materials (CaSO4 and CaSO4 – HA/TCP composites) as compared to autograft in a canine defect model.

Both 100% CaSO4 and the 3 CaSO4– HA/TCP formulations showed good bone formation. The group with the highest proportion of HA/TCP lasted longer than the other formulations, suggesting increased HA/TCP proportions reduce the rates of dissolution, without compromising bone formation in the current model.

Results suggests that a range of composites could be created to match the spectrum of resorption rates demanded by clinical applications.

In this REB-approved RCT, bilateral humeral and femoral cylindrical defects were filled with one of four types of pellets with varying proportions of CaSO4 – HA/TCP, autograft bone, or left unfilled. After sacrifice at six or twelve weeks, defect sites were evaluated histologically for tissue and inflammatory response, area fractions of residual graft material, and bone ingrowth in the defects.

The area of the defect occupied by residual graft material in the group with the highest percentage of HA/TCP was greater than in other composite groups (p< 0.0006). At twelve weeks, this group contained more total mineralized material (graft material + bone) (p< 0.005). The extent of new bone formation was not different among the composite groups at either time-point, but all showed more bone formation than the empty defect.

Funding: This study was funded by a research grant from Stryker Howmedica, Matwah, NJ.

Correspondence should be addressed to Cynthia Vezina, Communications Manager, COA, 4150-360 Ste. Catherine St. West, Westmount, QC H3Z 2Y5, Canada