Abstract
Lacerations of the FDP tendon in zone one may be reattached to bone with a modified Bunnell pullout suture or with suture anchors. Eleven cadaveric fingers were submitted to cyclical testing of five hundred cycles with either a modified Bunnell pullout suture of 3-0 polypropylene or a micro-Mitek suture anchor with 3-0 Ethibond. Gap formation was 6.6mm in the modified Bunnell group and 2.0mm in the micro-Mitek group (p< 0.001). Load to failure was 37.6N in the pullout group and 28.5N in the anchor group (p< 0.005). Gap in the pullout group and low failure load in the anchor group are of concern.
Distal zone one FDP tendon lacerations are usually re-attached to bone by a modified Bunnell pullout suture of 3-0 polypropylene. This treatment may lead to moderate to severe losses of DIP joint motion in up to 50% of patients. Suture anchors have recently been introduced as a fixation alternative. Cyclical testing simulating five days of a passive mobilisation protocol was used to compare the Micro-Mitek anchor to the modified-Bunnell pullout suture in FDP tendon fixation.
Eleven cadaveric fingers FDP tendons were repaired to bone using a modified Bunnell pullout suture of 3-0 polypropylene or a micro-Mitek anchor with 3-0 Ethibond. Testing was done from 2N to 15N at 5N/sec, for a total of five hundred cycles. Gap formation at the tendon bone interface was measured. Load-to-failure was performed on all specimens.
No specimens failed during cyclic testing. Gap formation was 6.6mm (SD 1.2, range 4.9–8.2mm) and 2.0mm (SD = 0.4, range 1.7–2.7mm) for the pullout technique and the micro-Mitek anchor repair respectively (p< 0.001). Load to failure data was 37.6N (SD 4.7, range 31.8–45.1N) for the pullout group and 28.5N (SD 4.0, range 21.8–33.4N) for the micro-Mitek group (p< 0.005).
This data suggests that both fixation techniques may be adequate to sustain five days of simulated passive rehabilitation therapy. Significant gap formation in the modified Bunnell pullout group is of concern although this needs to be correlated in the clinical setting. The lower failure rate of the micro-Mitek group may leave a narrow margin of safety for passive rehabilitation.
Correspondence should be addressed to Cynthia Vezina, Communications Manager, COA, 4150-360 Ste. Catherine St. West, Westmount, QC H3Z 2Y5, Canada