Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

BIOMECHANICAL STABILITY OF INTRAMEDULLARY NAILED HIGH PROXIMAL THIRD TIBIAL FRACTURES WITH CEMENT AUGMENTED PROXIMAL SCREWS



Abstract

Intramedullary nailed high proximal tibial fractures rely on the proximal screw-bone interface to provide stability, which can be insufficient in low-density bones. This study investigated the biomechanics of proximal screw cement augmentation in intramedullary nailing of high proximal tibial fractures. Mechanical stability in flexion/extension, varus/valgus and torsion was tested on six pairs of cadaveric proximal tibiae, with/without cement augmentation. Cement augmentation significantly increased construct stability in torsion and demonstrated a trend towards improved varus/valgus stabilization. Surprisingly, cement augmentation significantly decreased stability in flexion/extension, suggesting the potential benefits of cement augmentation may be limited in intramedullary nailed high proximal tibial fractures.

This study assessed the biomechanical effects of augmenting proximal screws with cement in intramedullary nailing of high proximal third tibial fractures.

While increased biomechanical stability was seen in torsion and varus/valgus, the reduction in stability in flexion/extension suggests that there may be limited benefit in cement augmentation in the nailing of high proximal tibia fractures.

High proximal tibial fractures fixed with intramedullary nailing rely primarily on proximal screw fixation to provide stability. Cement augmentation of the proximal screws may provide needed increased construct stability in low-density tibiae.

Cement augmentation provided a significant increase in construct stability in torsion (37.5% ± 8.0%, p< 0.05), with a trend toward increased stability in varus/valgus (25.5% ± 36.2%, p=0.08). Conversely, stability in flex-ion/extension was significantly decreased with the use of cement (25.9% ± 13.0%, p< 0.05).

Reamed intramedullary nails (Zimmer, MDN) were implanted into six pairs of elderly cadaveric fresh-frozen proximal tibiae and secured using four proximal screws (two transverse, two oblique, 4.5mm diameter). Bone cement was injected into the screw holes just prior to screw insertion to augment the bone-screw interface in one tibia from each pair. Specimen stability was tested in flexion/extension and varus/valgus loading to 12Nm and in torsion to 7Nm. Displacement data was generated and analyzed using a repeated measures design.

We hypothesized that intramedullary nail-bone construct stability would be increased with cement augmentation, particularly in low-density specimens. While construct stability was improved in torsion and varus/valgus, surprisingly stability consistently decreased in flexion/extension.

Correspondence should be addressed to Cynthia Vezina, Communications Manager, COA, 4150-360 Ste. Catherine St. West, Westmount, QC H3Z 2Y5, Canada