Abstract
Limitations of allografts and autografts for bone repair have increased the demand for a synthetic bone graft substitute for load-bearing and non-load bearing osseous defects. Tissue engineering of bone has thus been implicated to circumvent and eliminate the limitations of existing therapies, with living cell-scaffold constructs ultimately “integrating” with the patients own tissue. Bone engineering requires cells, growth inducing factors and a scaffold for delivery of cells to the anatomic site, creation of 3-D space for tissue formation and mechanical support. In this study, we investigated whether addition of osteogenic Protein-1 (OP-1) enhanced the osseoinductive properties of hydroxyapatite (HA) loaded with mesenchymal stem cells (MSCs). The study was conducted over a fourteen day period and the two groups HA/MSC and HA/MSC loaded with OP-1 were analysed qualitatively by SEM and quantitatively by assessment of proliferation (Alamar blue assay and total cellular DNA) and differentiation marker alkaline phosphatase activity (ALP). HA/MS/OP-1 showed a statistically significant (p< 0.05) increase in cell proliferation (286.52 ± 58.2) compared to the unloaded samples (175.62 ± 23.51). ALP activity (release) was also significantly enhanced (p < 0.05) in the loaded samples at day 14 (12.63 ± 1.58) compared to the control (2.73 ± 1.07).
Conclusion: the osseoinductive potential of HA was markedly improved by the incorporation of MSC’s and OP-1. This type of graft could provide improved mechanical stability at an earlier time point, and may influence future clinical application of HA for load bearing sites.
The abstracts were prepared by Mr Tim Briggs. (Editoral Secretary 2003/4) Correspondence should be addressed to him at Lane Farm, Chapel Lane, Totternhoe, Dunstable, Bedfordshire LU6 2BZ, United Kingdom