Abstract
Introduction Spondylolysis and isthmic spondylolisthesis (IS) have both a familial and mechanical aetiology, yet the phenotypic expression of the familial aetiology is unknown except for the observation of spinal bifida occulta. Other posterior element abnormalities are unrecognised, and any facet joint orientation (FJO) abnormality at the effected level has been ignored because of presumed previous mechanical defunctioning by the pars defect. The recognition of multilevel sagittal FJO in L4/5 degenerative spondylolisthesis (DS), begs the question whether more proximal segment examination may reveal FJ variations in IS.
Methods MRI scans were used to measure orientation of the FJ at L3/4, L4/5, and L5/S1 in 30 individuals with normal scans, and 30 patients with IS. The angular measurement recorded is in relation to the coronal plane. Repeated measures assessment confirmed method validity.
Results Mean measurement of axial FJO at L3/4 and L4/5 was 51.1 and 42.5deg in normal subjects, and 45.2 and 35.0deg in IS. The more coronal angulation at the levels above a pars defect in IS was highly statistically significant (p=0.0006 & p=0.00002). At L5/S1 orientations were the same (39deg).
Discussion Relative coronal FJO in the lumbar spine may be the phenotypic expression of the congenital aetiology of IS. The mechanism of effect may be increased stress concentration at the pars between or below coronally oriented FJs. These more coronal FJOs in IS also explain:- the common observation of retrolisthesis at L4/5 above IS when the L4/5 disc degenerates, lateral overhang of the L4/5 FJ to the L5 pedicle entry-point above an IS, and the exceptionally uncommon combination of DS at L4/5 and IS at L5/S1 when both disorders are independently common. This latter observation can be further explained by the generalization that DS occurs in those individual with sagittal lumbar facets, and that IS occurs in those with more coronal FJs.
The abstracts were prepared by Assoc Prof Bruce McPhee. Correspondence should be addressed to him at the Division of Orthopaedics, The University of Queensland, Clinical Sciences Building, Royal Brisbane Hospital, Herston, Brisbane, 4029, Australia.