header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

VERY LOW DOSE COMPUTER TOMOGRAPHY (CT) FOR PLANNING AND MEASURING OUTCOME IN COMPUTER ASSISTED KNEE ARTHROPLASTY



Abstract

Accurately planning the intervention and precisely measuring outcome in computer assisted orthopaedic surgery (CAOS) is essential for it permits robust analysis of the efficacy of these systems.

We demonstrate the use of low dose computer tomography (CT) radiation for both the planning and outcome measurement of robotic and conventionally performed knee arthroplasty.

Studies were initially performed on a human phantom pelvis and lower limb. The mAs (milliampere seconds) were varied from 120 to 75 at the pelvis and from 100 to 45 for both the knee and ankle whilst keeping the kV (kilovolt) between 120 and 140. Image quality was evaluated at the different doses.

The volumes scanned were defined on the scout film; they included the whole femoral head (0.5cm above and below the head), 20cm at the knee (10cm on either side of the joint line) and 5cm at the ankle (the distal tibia and the talus). Effective dose (mSv) was calculated using two commercially available software packages. This protocol was subsequently used to image patients in our prospective double-blind randomised controlled study of our active constraint robotic system ACRO-BOT.

With the reduction in the mA and scanned volume the effective dose was reduced to 0.761 mSv in females and 0.497 mSv in males whilst maintaining a sufficient image resolution for our purposes. We found that a mAs of 80 for the hip joint, 100 for the knee and 45 for the ankle was sufficient for imaging in both pre-op planning and pos-operative assessment in knee arthroplasty. This contributed on an average effective dose to the hip of 0.61 mSv, the knee 0.120 mSv and to the ankle 0.0046 mSv.

The results of our study show that we have considerably reduced the effective dose (0.8 mSv) to one third of the Perth Protocol (2.5mSv) by reducing the areas of the body scanned and adjusting the mA for the various parts of the body whist maintaining the x, y and z axis throughout the scan. The areas between the knee, hip and ankle that were not exposed to radiation are not strictly necessary for the planning of knee arthroplasty, but it is essential that the leg does not move during the scanning process. In order to prevent this leg was placed in a radiolucent splint. For post op three dimensional (3D) assessments only the knee component of the protocol is necessary.

Address for Correspondence: Mr K Deep, General Secretary CAOS UK, 82 Windmill Road, Gillingham, Kent ME7 5NX UK. E Mail: caosuk@gmail.com