header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

IS THERE AN ADVANTAGE OF IMPACTION GRAFTING WITH A GRAFT COMPOSED ENTIRELY OF HYDROXYAPATITE?



Abstract

Introduction: Periprosthetic bone loss, brought about by wear particle induced osteolysis, presents a major challenge and compromises outcome in revision Total Hip Replacement. Poor bone stock at revision hip replacement is the main indication for impaction allografting. There are well documented limitations in the use of bone graft. Autogenous bone graft is osseoinductive, though donor site morbidity and the limited amount available restrict its use. An alternative is allogenic bone graft from cadaveric femoral heads. The drawbacks of using allograft are a limited supply and the risk of disease transmission. An alternative may be the use of bone substitute materials. Usually these are used in conjunction with allograft and therefore a number of drawbacks still apply. This study investigates the use of impaction grafting without bone graft. In this study we tested Apopore, 60% porosity, 2–5 mm hydroxyappatite (HA) granules (ApaTech Ltd) in an animal impaction model with allograft as control. Hypothesis Impaction using porous granular HA induces a similar volume of new bone compared with impaction using allograft.

Methods and Materials: Cylindrical defects of 15mm diameter were created in the medial femoral condyles of 12 sheep (6 sheep in each group) and filled with 3.5 grams of either morselised ovine allograft, washed and defatted according to North London Tissue Bank protocols, or porous HA granules impacted with a specially designed impactor, 20 times with a force of 3 KN. This force was similar to that measured during impaction grafting in clinical cases. After 6 weeks the sheep were euthanized, samples embedded in resin and the amount of bone formation measured by histomorphometric analysis.

Results: Under the impaction forces used the HA graft was more impacted than allograft. In the impacted HA graft the average pore size was smaller than for impacted allograft. After 6 weeks more new bone formation was observed at the host implant interface than the middle of the implant in both groups. At the implant host interface there was 26.64% (± 2.13%) new bone formation in the allograft and 21.13% (± 4.51%) new bone formation in the HA implant. In the middle of the implants allograft produced 11.01% (± 2.07%) new bone whilst the HA produced 7.23% (± 4.05%) new bone. Two tailed t-test showed no significance in either region, p=0.28 at the interface and p=0.40 in the middle. Allograft underwent resorption, from 39.37% at time zero to 5.66% (± 2.04%) at 6 weeks, a total reduction of 85%, where as the volume of HA granules remained the same and was 49% at time zero and 48.59% (± 1.69%) at 6 weeks. Two tailed t-test showed a significant difference (p< 0.0001) between allograft and HA at 6 weeks.

Conclusions: This study shows that granular porous HA induced a similar level of bone formation as compared with allograft. Resorption of allograft in this model allowed greater ingrowth of fibrous tissue. This makes the structural scaffold much more porous, compromising stability of the construct. The HA was not resorbed after 6 weeks and hence may be more stable. HA also has the advantage of being readily available. This study demonstrates that a bone substitute material does not need to be mixed with allograft.

Correspondence should be addressed to Dr Carlos Wigderowitz, Honorary Secretary of BORS, Division of Surgery & Oncology, Section of Orthopaedic & Trauma Surgery, Ninewells Hospital & Medical School Tort Centre, Dundee, DD1 9SY.