Abstract
Background: It is thought that the forces transmitted across the hip joint produce migration of the prosthesis by failure at either the bone-cement or the prosthesis-cement interface. As symptoms associated with such motions often result from failure at the cement-bone interface, it is this interface and its sub-surfaces that are the critical areas of prosthesis loosening. Our aim is to produce a new and more accurate method of measuring strains at this critical interface.
Objective: To develop in-vitro experiments to measure the strain distributions near the bone-cement interface of the acetabulum region under physiological, quasi-static loading conditions.
Experimental Model: Two hemi-pelvic specimens of saw bones were used. Following careful placement of six protected precision strain gauges (4.6 x 6.4mm, tri-axial EA-13-031RB-120/E). One specimen was prepared to receive a cemented polyethylene cup (Depuy Charnley Ogee LPW 53/22). An uncemented 58mm Duraloc cup was implanted into a second specimen.
Methods: Hip joint force relative to the cup during normal walking (Bergmann, G., 2001. HIP98) was used for quasi-static tests on a Llody LR30K loading machine. The magnitude of the maximum and minimum principal strains, and the orientation of the maximum principal strains were calculated from a 32 channel digital acquisition system.
Results: For both specimens, the maximum principal strains at the maximum loading were highest in the medial wall (dome area) of the acetabulum. The tensile strain from the dome of the uncemented specimen at the maximum loading was twice that of the cemented specimen. In the cemented specimen, the compressive strains in the medial wall were almost twice the tensile strains at the maximum load. Within the acetabular quadrants, the highest strains were recorded in the posterio-inferior quadrant. Compressive strains in the posterio-inferior wall of the acetabulum seem to be comparable to those in the anterior-superior wall.
Conclusion: The critical areas for load transfer in the acetabulum are the medial wall (dome area), the posterio-inferior and the anterior-superior quadrants. The uncemented cup appears to provide a better load transfer mechanism than the cemented cup.
Correspondence should be addressed to Dr Carlos Wigderowitz, Honorary Secretary of BORS, Division of Surgery & Oncology, Section of Orthopaedic & Trauma Surgery, Ninewells Hospital & Medical School Tort Centre, Dundee, DD1 9SY.