Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

BIOMECHANICAL ABNORMALITIES OF THE BONE IN DENTIN MATRIX PROTEIN-1 DEFICIENT MICE



Abstract

Dentin matrix protein (DMP-1), a phosphoprotein highly linked to dentin formation, has recently been reported to have an important role in skeletal development. Previously we reported that adult mice lacking the gene for DMP-1 exhibit the characteristics of chondrodysplasia, osteoarthritis, and showed severe defects in mineralization. DMP-1 knock-out (KO) mice display a profound defect in mineralization, and this is not due to a systemic defect in calcium/phosphate metabolism because serum levels of calcium and phosphate are similar to those in the wild-type mice. Although KO neonates and newborns appear normal, upon closer examination, these animals exhibit skeletal abnormalities, which include delayed secondary ossification and impaired bone remodelling. Heterozygous DMP-1 (H) mice however, show no apparent differences to the wild-type mice. In this study, biomechanical assessment tests of bones from DMP-1 KO mice were performed. Fifteen heterozygous, H, (DMP-1 +/−) and 15 KO, (DMP-1 −/−) male mice were produced and used in this study. At 1, 3 and 7.5 months of age, the mice were sacrificed and 4–5 ulnae from each animal group were harvested and stored in 70% ethanol solution. Volumetric density (BMD) measurements of the intact ulnae were performed using peripheral quantitative computed tomography (XCT960M; Stratec, Pforzheim, Germany) and Norland Stratec software version 5.10. One millimetre thick slices were scanned at a distance of 1 mm under the articular cartilage surface of the elbow as identified by the scout view of the CT scan. BMD of the corticalis and subcortical bone were recorded. Cross-sectional area measurements were also made at the mid-diaphysis of the ulnae. Biomechanical tests were performed in 3-point bending, with supports 3.5 mm apart at a rate of 3 mm/min (Lloyd Instruments Ltd, UK). The ultimate load, yield load and stiffness were determined from the load-displacement curves. All data were analysed using Mann-Whitney U tests (SPSS, Version 9, Chicago, Illinois). Differences were considered significant at p < 0.05. Density studies revealed that H mice had higher BMD than KO mice at all ages (p < 0.001). In the H and KO mice, the cortical BMD peaked at 3 and 7.5 months, respectively. At 1 month, the mean cross-sectional areas of the ulnae were larger in H mice compared to KO mice (0.50 mm2 Vs 0.33 mm2). However at 7.5 months of age, the reverse was observed (H = 0.75 mm2 and KO = 0.98 mm2). Biomechanically, stiffness increased with age at a higher rate in H mice than KO mice. Significant differences were observed at 3 months (p< 0.01) and 7.5 months (p< 0.05) between the two animal groups. There were no significant differences between stiffness values at 1 month. This study has demonstrated that DMP-1 deficiency leads to:

  1. severely compromised bone mineralization;

  2. poor biomechanical properties of the long bone; and

  3. delayed bone development and remodelling. In conjugation with previous findings that DMP-1 plays important roles in the early developmental stage of bone through its effects on osteogenic gene expression of Cbfa1, Col I, and Col II and regulating vascular invasion, the current study may suggest another important role for DMP-1 as a regulator for skeletal mechanostasis.

Correspondence should be addressed to Dr Carlos Wigderowitz, Honorary Secretary of BORS, Division of Surgery & Oncology, Section of Orthopaedic & Trauma Surgery, Ninewells Hospital & Medical School Tort Centre, Dundee, DD1 9SY.