Abstract
Introduction: Numerous studies in the orthopaedic literature have reported changes in knee kinematics following rupture of the Anterior Cruciate Ligament (ACL). Gait analysis is currently the preferred method for studying these in vivo kinematics. The accuracy of this method of analysis remains limited due to errors related to skin movement artefact. Most studies have therefore been limited to analysing subjects performing simple tasks such as straight-line walking, since results become increasingly inaccurate as the subject moves faster. Standard skin marker formats allow measurements of knee flexion angle and varus/valgus angles to be recorded relatively accurately during such tasks. Accurate measurements of rotations and translations at the knee joint, however, are not possible with these set-ups.
Aim: To produce a new method for interpretation of kinematic data from gait analysis, to allow accurate measurement of 3-D displacements at the knee joint during dynamic activity.
Method: We employed two different sets of skin markers in an attempt to increase the accuracy of our data, by diminishing the effects of skin movement. The Kabada1 marker set was used with retroreflective spheres of 14.5mm diameter. This marker set was used to establish 3-D femoral and tibial co-ordinate systems. We then established a femoral and tibial co-ordinate centre within the distal femur and proximal tibia respectively. A second set of markers was used similar to the “point-cluster” method described by Andriacchi et al2. This involved groups of eight smaller spheres (9.5mm diameter) placed in a non-uniform distribution on each of the thigh and shank segments. The positions of all these remaining markers, relative to the co-ordinate centres were then established. 15 subjects were then recorded while performing a series of running and cutting tasks. For each trial that was then analysed, we used all visible markers to optimize the recorded position of the tibial and femoral co-ordinate centres, using a method similar to that described by Soderkvist3. The displacements of these co-ordinate centres were then used to calculate the 3-D tibio-femoral kinematics. Reliability and repeatability tests suggest that this method produces results accurate to 3–4mm.
Conclusion: We believe we have developed a practical and accurate method to analyse 3-D joint kinematics from gait laboratory data.
Correspondence should be addressed to Mr Carlos Wigderowitz, Honorary Secretary BORS, University Dept of Orthopaedic & Trauma Surgery, Ninewells Hospital & Medical School, Dundee DD1 9SY.
1 Kadaba, M. P.; Ramakrishnan, H. K.; and Wootten, M. E.: Measurement of lower extremity kinematics during level walking. J Orthop Res, 8(3): 383–92, 1990. Google Scholar
2 Andriacchi, T. P.; Alexander, E. J.; Toney, M. K.; Dyrby, C.; and Sum, J.: A point cluster method for in vivo motion analysis: applied to a study of knee kinematics. J Biomech Eng, 120(6): 743–9, 1998. Google Scholar
3 Soderkvist, I., and Wedin, P. A.: Determining the movements of the skeletonusing well-configured markers. J Biomech, 26(12): 1473–7, 1993. Google Scholar