Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

ENHANCED CORROSION IN SMALL MODULAR TAPERS IN TOTAL HIP REPLACEMENT



Abstract

Introduction: To investigate the head/neck interface of total hip replacements and to see whether the use of small spigots (minispigots) results in enhanced wear and corrosion of tapers compared to standard spigots and the influence of the surface finish on this.

Methods: In the total hip replacement combinations the heads were made of cobalt-chrome (CoCr) and the stems of titanium alloy (Ti). Firstly wear and corrosion of minisigots were compared with standard spigots (Test 1) and secondly, these minispigots were compared with another minispigot with a smoother taper surface finish (Test 2). The samples were immersed in aerated Ringers solution (37°C) and loaded for 10 million cycles. The specimens surface parameters and profiles were measured before & after the test. Electrochemical static corrosion tests were carried out on the rough & smooth minispigots from Test 2 where the current was measured with constant potential under loaded and non-loaded conditions. A cyclical sinusoidal load of 1500-200 Newtons for 1000 cycles at ~1 Hz was used. Pitting tests measured the current while increasing and then decreasing the potential of non-loaded and loaded specimens. Two newly manufactured rough and smooth minispigots were subjected to the same electrochemical corrosion tests.

Results: In Test 1 the results demonstrated that pre-test the surfaces of the female tapers were similar for all heads. Post-testing the Ra values on the female tapers had become greater for the minispigots compared with standard spigots. An abrupt change was noted on the surface profile of the female taper where it was in contact with the male Ti taper, indicating the the CoCr head had corroded. The Ti male tapers were unchanged. Scanning electron microscopy showed that the coarser profile in the corroded region of the CoCr was similar to the profile on the Ti male taper. Pitting corrosion was evident in the grooves on the CoCr. In Test 2 the smooth spigots were not affected, but in the rough minispigots, Ra values had increased in the female tapers. Static corrosion tests showed evidence of fretting in the rough but not the smooth minispigots. When comparing new rough & smooth minispigots, static corrosion testing with clyclical loading showed that for minispigots with a rough finish the current fluctuated with each cycle. Pitting scans showed a greater hysteresis with the rough minispigot compared with the smooth minispigot indicating potentially greater corrosion in the former.

Conclusion: The cobalt-chrome/titanium alloy combinations where the surface finish on the male taper was coarse, corrosion was increased in minispigots compared with standard spigots. This was due to the smaller area of contact of the minispigot at the interface. This corrosion appears to be mediated through the mechanism of fretting corrosion. Surface finish was crucial and corrosion of the minispigot was reduced if the surface finish was smooth. Manufacturers should investigate the effect of surface finish on the corrosion of their tapers particularly where cobalt-chrome/titanium alloy combinations are used.

Correspondence should be addressed to Mr Carlos Wigderowitz, Honorary Secretary BORS, University Dept of Orthopaedic & Trauma Surgery, Ninewells Hospital & Medical School, Dundee DD1 9SY.