Abstract
Introduction: Iontophoresis is a method to introduce antibiotic molecules into allograft bone using an electrical potential; the antibiotics may then be released at therapeutic levels for extended periods of time. This is the first report of iontophoresed allograft implantation into patients.
Method: A method of loading tubular sections of cortical bone was used in theatre prior to implantation. Postoperative serum, drain and allograft antibiotic assays were performed. Patients were followed-up clinically and radiologically. All patients who received a bulk segmental allograft from June 1997 were entered into the trial.
Results: Since June 1997, 35 patients have received 37 allografts. Indications for allograft insertion were limb salvage for tumour (18), and poor bone stock associated with infection (11), periprosthetic fracture (6), aseptic loosening (1) and recurrent dislocation of total hip replacement (1). Mean follow-up is 3.3 years, and no patients have been lost to follow-up. One patient received two allografts in different sites and one had an allograft exchange. There has been one superficial wound infection and one deep infection. The latter patient was revised to another iontophoresed allograft and has had no recurrence at 34 months. One allograft has been revised to a vascularised fibular graft and allograft exchange following fracture of metal fixation. There was one case of persistent non-union in a knee arthrodesis which was treated after 21 months by removal of the intramedullary fixation and use of an Illizarov frame. The allograft was not revised. All other allografts are in situ with no complications related to the allograft. Eleven patients had pre-existing proven infections. None of these patients have been re-infected to date. Therapeutic gentamicin and flucloxacillin levels were detected in drain fluid samples post-operatively.
Conclusions: Iontophoresis is a safe and inexpensive technique that delivers high local dose of antibiotic, which may reduce infection in avascular allograft bone.
Theses abstracts were prepared by Professor Roger Lemaire. Correspondence should be addressed to EFORT Central Office, Freihofstrasse 22, CH-8700 Küsnacht, Switzerland.