Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

COMPARATIVE STUDY OF THE MIGRATION OF THE TIBIAL TRAY IN TOTAL KNEE ARTHROPLASTY FOR CEMENTED, UNCOATED AND PERIAPATITE COATED COMPONENTS USING ROENTGEN STEREOPHOTOGRAMMETRIC ANALYSIS (RSA)

7th Congress of the European Federation of National Associations of Orthopaedics and Traumatology, Lisbon - 4-7 June, 2005



Abstract

Introduction: In total knee arthroplasty (TKA) it remains a topic if cementless designs offer long-term stability equivalent to cemented procedures and if the components should be coated with calciumphosphate to enhance fixation. This study compares the three-dimensional migration patters of cemented and uncoated and periapatite (PA) coated tibial trays during a 2-year clinical follow-up study using roentgen stereophotogram-metric analysis (RSA) measurements as a predictor of long-term implant loosening (Ryds definition).

Methods: A double blind randomized prospective study was performed on 101 osteoarhtritic patients receiving 115 Duracon TKA. The tibial tray was either cemented (25), uncoated and uncemented (46) or PA-coated and uncemented (44). The groups were matched for sex, age, BMI and pre-op Insall score. Patients were evaluated at 1 week, 3, 6, 12 and 24 months post-operatively using standard radiographs and Insall scores. At each evaluation RSA measurements determined the translational (medial-lateral (ML), caudal-cranial (CC), anterior-posterior(AP)) and rotational (anterior tilt, external and valgus rotation) displacements of the tibial tray.

Results: Insall scores were not statistically different between the groups. Average component displacement was low for the cemented components in all directions. For the uncemented trays migration was highest in the CC direction (subsidence) and steep during the first 6 weeks. At two years the uncoated trays showed significantly more subsidence (−0.5 0.63 mm, range: −2.1 to 0.5 mm) than the cemented components (0.1 0.17 m, range: −0.2 to 0.4 mm, p< 0.05) and the PA-coated group (−0.1 0.60 mm, range: −2.8 to 0.3 mm, p< 0.05). Average subsidence of the cemented and PA-coated implants was nearly the same but variability was higher for the coated trays (p=0.01). Displacements in all other directions were not significantly different between the groups. Using Ryds definition, a total of 10 tibial trays from the cemented group (40%), 29 trays from the uncoated group (63%) and 11 trays from the PA-coated group (26%) were identified to be at risk for long-term loosening. In seven cases (all cemented) component tilt was critical.

Conclusion: At 2 years no clinical differences were found between cemented, uncoated and PA-coated tibial trays. However, RSA measurements showed significantly different migration patterns and predictions for long-term implant stability. Steep initial subsidence before stabilisation seems an inherent characteristics of uncemented fixation. In contrast, the cement layer below cemented trays can lead to AP tilt. Uncoated uncemented components migrate significantly indicating a high risk of late loosening. PA-coating reduces tray migration and the risk of long-term failure to levels equivalent to cemented fixation.

Theses abstracts were prepared by Professor Roger Lemaire. Correspondence should be addressed to EFORT Central Office, Freihofstrasse 22, CH-8700 Küsnacht, Switzerland.