Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

BMP-2 IN NORMAL AND DEGENERATED DISCS: AN IN VIVO ANIMAL STUDY



Abstract

Study Design: Experimental in vivo study on New Zealand white rabbits.

Summary of Background Data: Bone Morphogenetic Protein 2 (BMP-2) is of increasing orthopaedic interest due to its osteo-inductive potency. Currently it is used in human and animal studies for posterolateral spinal fusions. However, little data is available concerning the pathophysiologic role of BMP-2 in normal and degenerated discs.

Methods: A recently established animal model was used to create mechanically induced disc degeneration of one single segment. In 6 animals, an external disc compression device was attached for 28 days. For comparison 8 animals underwent a sham operation.

Outcome Measures: The discs were analysed by a) immunohistology to determine protein content of BMP-2 and b) real time RT-PCR to quantify RNA content of BMP-2.

Results: Sham controls showed a homogeneous distribution of BMP-2 throughout the annulus fibrosus and cluster-like accumulation within the nucleus pulposus. Mechanically degenerated discs determined a reduction of positive cells with areas lacking BMP-2. Real time RT-PCR results demonstrated a statistically significant (7.92 times) upregulation of BMP-2 as compared with shams (p=0.033).

Conclusions: Mechanically induced disc degeneration is associated with a loss of BMP-2 protein. Disc cells respond with a stimulation of BMP-2 gene expression. This data confirms the role of BMP-2 in the pathophysiology of disc remodeling. It remains unclear if this mechanism of BMP-2 stimulation contributes to the disc reorganization alone or if it may also play a role in osteo-inductive processes like osteophyte formation or endplate sclerosis.

These abstracts were prepared by Mr. Brian J C Freeman FRCS (Tr & Orth). Correspondence should be addressed to him at The Centre for Spinal Studies and Surgery, University Hospital, Queens Medical Centre, Nottingham NG7 2UH.