Abstract
Introduction: Following hip replacement surgery the tension of the soft tissues and the laxity of the joint may vary. Variations in surgical approach, technique and fixation method may influence the effective joint laxity and the level of force applied across the prostheses during the swing phase of gait. The aim of this study was to investigate the effect of different swing phase load conditions on the wear metal-on-metal hip prostheses using a hip simulator.
Methods: Cobalt chrome metal-on-metal bearings, 28mm in diameter were tested for five million cycles in a Prosim hip simulator with flexion-extension and internal-external rotation kinematic inputs. A Paul-type twin peak loading curve was applied, which was modified to provide three different swing phase load conditions;
-
Low positive swing phase load (< 100N)
-
Positive swing phase load (300N, as per standard ISO 14242–1)
-
Negative swing phase load, leading to microseparation and joint laxity.
All tests were carried out in 25% (v/v) new-born bovine serum, with gravimetric wear measurements completed every million cycles.
Results: The wear rates for the different swing phase conditions are shown in Figure I. Elevating the swing phase load from 100N to 300N (ISO load) increased the overall wear rate by 10-fold. Introducing microseparation into the gait cycle increased wear by a further 3-fold. These results indicate the sensitivity of metal-on-metal bearing wear to swing phase load conditions and joint laxity.
Discussion: Little attention to date has been paid to the importance of joint laxity and swing phase load on the wear rate of hip replacements. Elevation of wear rates with increased swing phase load was probably due to the depletion of fluid film lubrication. This was consistent with the findings under stop-start motion [Medley et al., 2002] and demonstrates the dependency of metal-on-metal hip replacements on fluid film lubrication conditions. Testing with a negative swing phase load elevated wear due to microseparation of the components, the head contacted the insert rim at heel strike which caused a stress concentration and damage to the insert rim. The results demonstrate that the wear performance of metal-on-metal hip replacements is highly dependent on swing phase load conditions. It is postulated that the fixation method and surgical technique can effect the swing phase load; over tensioning of the soft tissue may increase the swing phase load, whereas joint laxity will cause a negative swing phase load and possibly microseparation.
Correspondence should be addressed to Carlos Widgerowitz, Honorary Secretary BORS, Division of Surgery and Oncology, Section of Orthopaedic and Trauma Surgery, Ninewells Hospital and Medical School, Tort Centre, Dundee DD1 9SY, Scotland.