Abstract
Introduction: The ability to generate bone for skeletal repair, replacement or restoration is a major clinical need. Indeed the paucity of techniques in reconstructive surgery and trauma emphasise the need for alternative bone formation strategies. Natural biological ceramic structures possess arrangements of structural elements that govern and optimise tissue function, nutrition and organisation. The aim of this study was to fabricate biomineral microporous shells with highly complex forms and to examine their ability to interact with human osteoprogenitor cells as cell and growth factor delivery vehicles.
Methods: Microporous vaterite shells were generated using a synthetic in-solution mineralisation technique in which mineral is spontaneously deposited around vesicular templates (Walsh and Mann 1999)* Porous and textured self-organising hollow microspheres (5–20 _m) were generated expressing controlled and uniform shapes. These micropores puncture the surface at high densities and are interconnected throughout the sphere. Primary human bone marrow cells labelled with Cell Tracker Green and ethidium homodimer-1 fluorescent labels and osteoprogenitors transfected with an adenoviral vector expressing Green Fluorescent Protein (AdGFP) were cultured with vaterite shells over three weeks.
Results: Cell biocompatibility of these biomimetic spheres was confirmed by confocal fluorescence and light microscopy in primary human bone marrow cultures labelled with CTG and bone marrow cultures transfected with AdGFP. At three weeks microspheres were encapsulated and integrated with osteoprogenitor cells. Histological analysis confirmed expression of alkaline phosphatase, extracellular matrix synthesis and the capacity for extensive mineralisation. Examination by SEM, fluorescent and light microscopy showed that the growth of osteoprogenitors transfected with AdGFP and microspheres in pellet culture showed vaterite spheres were encapsulated and integrated within the osteoprogenitor cell matrix indicating the potential of growth factor delivery. To determine the potential of the spheres to encapsulate selected proteins, microporous spheres were incubated with bovine haemoglobin. FITC microscopic evidence showed haemoglobin could be entrapped inside the spheres and between the biomineral crystal plates during self-assembly.
Discussion and Conclusion: These studies demonstrate the development of facile techniques for the generation of porous microsphere sponges that are biocompatible, possess the ability to aid mineralisation and for the delivery of cell and growth factors. These calcium carbonate structures provide a material with widespread application in a range of tissue engineering applications including skeletal tissue regeneration.
Correspondence should be addressed to Carlos Widgerowitz, Honorary Secretary BORS, Division of Surgery and Oncology, Section of Orthopaedic and Trauma Surgery, Ninewells Hospital and Medical School, Tort Centre, Dundee DD1 9SY, Scotland.
* Walsh, D., Lebeau, B., & Mann, S. (1999) Morphosynthesis of Calcium Carbonate (vaterite) Microsponges. Adv. Mater; 11; 324–328 Google Scholar