Abstract
Purpose: Finite element analysis can be used to assess the behaviour of loaded structures. We used this method to evaluate the influence of glenoid implant design on the behaviour of an osteoarthritic scapula.
Material and methods: A 76-year-old female patient scheduled for a shoulder prosthesis underwent preoperative computed tomography of the osteoarthritic shoulder. Two polyethylene implants were evaluated: one with a triangular stem and the same prosthesis with three studs. 3D reconstruction of the glenoid cavity with the implants was then obtained and processed with the finite elements method. Three loadings were applied to the model: centred loading to reproduce the case of an ideally stable prosthesis with a normal tendinomuscular environment and excentred loading to simulate a deficient rotator cuff or prosthesis instability.
Results: With centred loading, stress remained low, to the order of 7 MPa, at the stem-glenoid cavity interface. Excentered loading produced peak stress on the borders of the glenoid implants, directly under the loading zone and at the tip of the stem, at the bone-cement interface, reaching 20 MPa. The implant tended to bend in the anteroposterior direction producing strong shear forces on the posterior part of the glenoid cavity. These forces caused micromovement at the cement-bone interface. There was no significant difference between the stem and stud implants.
Discussion: Eccentric loading of the glenoid implant appears to have a negative effect on long-term survival, the stress reaching levels greater than the values of cement fatigue fracture. Peak stress was situated on the posterior border of the cement layer due to the small space available between the implant the cortical bone in the posterior part of the osteoarthritic scapula. In this situation, the tip of the stem or the studs tend to come into contact with the posterior cortical of the scapula. When inserting a total shoulder prosthesis, it appears to be more important to keep in mind the geometry and the mechanical properties of the scapula than the implant design.
Correspondence should be addressed to SOFCOT, 56 rue Boissonade, 75014 Paris, France.