Abstract
Flexion after total knee arthroplasty (TKA) has recently been improved by changing implant designs, surgical techniques and early postoperative rehabilitation protocols. Especially for Asian people, deep knee flexion is essential because of their life style. Small numbers of patients can achieve full flexion after TKA, however, most current prostheses are not designed to allow deep knee flexion safely. Furthermore, the kinematics involved in knee flexion greater than 90 degrees in cases of TKA is still unknown, even though fluoroscopic studies have shown the paradoxical anterior femoral translation in posterior cruciate retaining (CR) TKA with knee flexion up to 90 degrees. The purpose of this study was to determine the femoro-tibial contact pattern in deep knee flexion.
The knee that had been operated upon was passively flexed from 90 degrees up to the maximum flexion under anesthesia soon after the surgery. Lateral roentgenograms of the knee were taken during flexion, and the three-dimensional kinematics was analyzed using image-matching techniques. Nine patients with CR type were included.
The average maximum flexion angle was 131.8 °. The contact point moved posteriorly with deep knee flexion except for one patient. Five out of nine patients showed external rotation of the femoral condyle. Two patients showed internal rotation, and the other two exhibited no rotational movement. None of the patients showed dislocation or disengagement of the components. At the maximum flexion, the edge of the posterior flange of the femoral component contacted the polyethylene insert.
This study was performed under non-weight-bearing conditions, but deep knee flexion is not usually performed in weight-bearing conditions. Most of the CR type showed posterior roll back during deep knee flexion. The design of the posterior flange of the femoral component should be changed to prevent damage to the polyethylene.
The abstracts were prepared by Nico Verdonschot. Correspondence should be addressed to him at Orthopaedic Research Laboratory, University Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands.