Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

O3333 RGD PEPTIDE SURFACE TREATMENT INCREASES BONE INGROWTH TO PRESS-FIT IMPLANTS. A STUDY IN CANINES



Abstract

Aims: Early bone ingrowth is known to increase primary implant þxation and reduce the risk of early implant failure. RGD peptide (Arg-Gly-Asp) has been identi-þed as playing a key role in osteoblast attachment and proliferation on various surfaces. The aim of this study is to test whether a monolayer of RGD peptide on Ti implants will increase bone ingrowth in vivo. Methods: Controlled canine study (n=8). 6 x 10mm plasma sprayed porous coated implants (Ti6Al4V) was inserted as press-þt in the proximal tibia bilaterally. Observation period was 4 weeks. Implants was coated in a 100 μM solution of cylic (RGDfK) peptide for 24 hours (Biomet-Merck, Darmstadt, Germany). Two dogs had to be excluded due to wrong placement of the implants. Results are presented as median and range. Results: A signiþcant increase in bone/implant contact was seen for the RGD treated group (p< 0.05). Bone fraction at the interface was 0.18 (0.10–0.45) compared to 0.09 (0.05–0.14) for the control. Mechanical þxation, measured by push-out test, was increased. Shear strength was 85% higher for the RGD group; however this difference was not signiþcant. Conclusions: This study shows that implant surface treatment with RGD enhances early bone ingrowth to press-þtted implants. However, future studies will be preformed regarding coating integrity and long-term effects, as well as its performance under loaded conditions.

Theses abstracts were prepared by Professor Dr. Frantz Langlais. Correspondence should be addressed to him at EFORT Central Office, Freihofstrasse 22, CH-8700 Küsnacht, Switzerland.