Abstract
Aims: Developmental dysplasia of the hip (DDH) is a common paediatric orthopaedic problem. Open reduction and debridement of the hip joint in neonates is necessary to ensure a congruent reduction in some patients. Despite advances in the treatment of DDH, the various surgical approaches are not without limitations and risks. The purpose of this study was: (a) to design a suitable animal model of DDH for the purpose of designing and evaluating hip arthroscopy, (b) to document the pathoanatomy of the dysplastic hip arthroscopically and (c) to deþne the methodology of performing hip arthroscopy in neonates with DDH. Methods: A novel model of producing hip dysplasia in large white cross piglets has been created. 4-week-old piglets undergo surgical þxation of the knee by retrograde passage of a 3.5mm diameter steinmann pin. After free ambulation, progressive hip dysplasia is produced. We have monitored the development of hip dysplasia at 4 and 6 weeks post þxation by plain radiographs, MRI and Hip Arthroscopy using a 2.7mm diameter arthroscope. Results: We have successfully produced hip dysplasia in an animal model of comparable size and anatomy to that seen in infants. Hip arthroscopy was performed in 20 animals. Documentation of a lax capsule, elongated ligamentum teres and pulvinar has been made. In addition arthroscopic debridement of the joint has been performed. We believe that arthroscopic debridement of the impediments to reduction in DDH is possible using the techniques learned from this model.
Theses abstracts were prepared by Professor Dr. Frantz Langlais. Correspondence should be addressed to him at EFORT Central Office, Freihofstrasse 22, CH-8700 Küsnacht, Switzerland.