Abstract
Introduction: Virtual Reality arthroscopic training systems offer the potential for improved training, assessment and evaluation of surgical skills. Of the various virtual reality arthroscopic training systems available, the main limiting factors preventing their use as a standard training tool is the lack of force feedback. No force data is available from in vivo measurements, which would serve as the basis for the development of such a system. Methodology: We attached a six axis force torque (FT) sensor to a standard arthroscopic probe while at the same time making necessary modiþcations to meet the safety and sterility requirements, and measured in vivo the forces and torques generated during various standard tasks of a routine knee arthroscopy. [The procedure was split into 11 separate tasks] A simultaneous video recording of the procedure was made and synchronized to the force torque recording by using an audio signal. A pilot study to evaluate the difference between experienced and less experienced arthroscopists was also undertaken. Results and conclusions: For comparison and evaluation purposes the vectored XY torque recording was used. Comparison between junior and senior arthroscopic surgeons was done by assessing the XY Torque distribution over time and evaluation of the graph patterns generated while performing similar tasks. Though differences can be seen, it did not show any statistical signiþcance. Successful completion of an arthroscopic procedure requires adequate visualization and gentle manipulation of instruments and tissues within the knee. The use of a force torque sensor in arthroscopic training systems will allow detection of and warn when excessive potentially damaging forces are being used. This will provide a means for improving training as well as a method of evaluation, including revalidation.
Theses abstracts were prepared by Professor Dr. Frantz Langlais. Correspondence should be addressed to him at EFORT Central Office, Freihofstrasse 22, CH-8700 Küsnacht, Switzerland.