Abstract
Objectives: To determine the correlation between brace treatment and the brace tightness and treatment compliance
Design: A monitoring device [1] was designed to measure and record the time and temporal profile of the loads on the pressure pad imposed on the trunk during daily activity. The device consists of a programmable digital data acquisition system and a force transducer. Three light emitted diodes (LEDs) were used to indicate the tightness level below 80%, between 80 to 120%, and above 120% of the load level prescribed. Each subject used the indicator on the device to adjust the tightness of the brace so as to achieve the prescribed pad load. The prescribed pad load had been set by his/her physician after the transducer was installed.
Subjects: Eighteen brace candidates, 3 males and 15 females age 13.6 ± 1.8 years, who had worn their braces from 6 months up to 1 year were recruited. All subjects gave their informed consent to participate in this study. The selection criteria were 1) diagnosis of idiopathic scoliosis, 2) ages between 9 – 15 years and 3) prescribed brace treatment. The exclusion criteria were anyone who 1) had other musculoskeletal or neurological disorders, 2) refused to wear the brace, 3) was being weaned from treatment, or 4) was a surgical candidate. Twelve of eighteen subjects have completed their brace treatment. Loads were measured one sample per minute. These twelve subjects used the systems from 3 to 14 days (9.4 ± 4.9 days). All subjects reported that the time they wore their braces was not influenced by wearing the monitor.
Outcome measures: The quality of the brace wear was assessed by how often the brace was worn with zero force (i.e., not worn), below 80%, between 80 to 120%, and above 120% of the load level prescribed in the clinic. The quantity of brace wear was determined by how many hours per day they wore their braces. Three treatment outcomes were defined: improvement, no change, and deterioration. Improvement was defined as a reduction of the Cobb angle, compared to the pre-brace measurement, by more than 5 degrees after weaning; no change was defined as a Cobb angle change of ± 5 degrees after weaning, and deterioration was defined as a Cobb increase greater than 5 degrees after weaning.
Results: One subject had curve improvement, 7 subjects had no change and 4 subjects had curve deterioration. The improvement subject was 84% compliant and wore her brace above or in the target load range 62% of prescribed time. No change subjects were 70 ± 12.5% compliant and wore their braces above or in the target load range 40 ± 24% of prescribed time. Deterioration subjects were 64 ± 10% compliant and wore their braces above or in the target load range only 26 ± 9% of prescribed time.
Conclusions: It appears that tightening the straps to the prescribed level and wearing the brace as much as the prescribed time is important for successful brace treatment. Simply wearing a brace is not enough; it has to be worn tightly and often.
The abstracts were prepared by Mr Peter Millner. Correspondence should be addressed to Peter Millner, Consultant Spinal Surgeon, Orthopaedic Surgery, Chancellor Wing, Ward 28 Office Suite, St James’ University Hospital, Beckett Street, Leeds LS9 7TF.
References:
1 Lou E. The Daily Force Pattern of Spinal Orthoses in Subject with Adolescent Idiopathic Scoliosis. Prosthetics & Orthotics International, 2002, 26: 58–63. Google Scholar