Abstract
Objective and Background: This study investigated the effects of IL-1 on human intervertebral disc cells (IVD). IL-1 has been implicated in the degradation of IVD, in particular the up-regulation of Matrix Metalloproteinases (MMPs) and the down regulation of proteoglycan synthesis. However very little is known of the effects of IL-1 on human IVD cells. Here, we have investigated the effects of both IL-1 α and IL-1 β on nucleus pulposus (NP) and Annulus fibrosus (AF) cells isolated from human degenerate IVD.
Methods: Human IVD tissue was obtained from disc replacement surgery and separated into NP and AF tissue, cells were cultured within an alginate bead system for 5 weeks before treatment with IL-1 α and IL-1 β for 48 hours. Following treatment, RNA was extracted and Real time RT-PCR was performed to investigate gene expression of IL-1 gene family, matrix proteins and degrading enzymes MMPs and ADAMTS.
Results: Interleukin 1 α showed a more potent response than IL-1 β and in addition NP cells were more sensitive than AF cells. In summary, IL-1 showed a positive feedback loop causing an up-regulation of α and β genes. IL-1 Ra was also up-regulated but to a lesser extent than IL-1 α and IL-1 β. A negative feedback loop was seen with inhibition of the IL-1 receptor gene upon treatment with IL-1. MMPs and ADAMTS showed up-regulation upon treatment with IL-1. In addition IL-1 down regulated the matrix protein’s collagen type II and Aggrecan.
Conclusions: This study demonstrates that IL-1 causes up-regulation in discal cells of the major degrading enzymes involved in discal degeneration, and a down regulation of the major matrix components within the IVD. Suggesting that IL-1 plays a major in process of discal degeneration.
Correspondence should be addressed to the editorial secretary: Dr Charles Pither, c/o British Orthopaedic Society, Royal College of Surgeons, 35-43 Lincoln’s Inn Fields, London WC2A 3PN.