Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

OSTEONECROSIS OR OSTEO-APOPTOSIS?



Abstract

To investigate the underlying mechanism of osteocyte death in osteonecrosis of the femoral head (ONFH).

Although there are a plethora of conditions that predispose to ONFH the underlying mechanism that results in the death of osteocytes is poorly understood. Consequently, treatment for early disease has a variable outcome. Recent investigation has focussed on the role of nitric oxide (NO) in the local control of bone turnover. NO is central to bone cell metabolism and has been implicated in the development of apoptosis.

Bone samples were harvested from the femoral heads of 40 patients undergoing total hip arthroplasty – 20 for advanced ONFH and 20 for osteoarthritis (control group). Immunocytochemical techniques were used to demonstrate evidence of NO synthase (iNOS and eNOS) as a marker of NO production and for evidence of apoptosis.

There was a marked increase in the expression of both eNOS and iNOS in the bone marrow and osteocytes from patients with ONFH secondary to steroids and alcohol with a correspondingly high proportion of apoptotic cells. Very little evidence of either eNOS or iNOS could be demonstrated in the control group and no significant apoptosis could be demonstrated. Samples from patients with ONFH secondary to sickle cell disease likewise had little evidence of apoptosis and a less marked increase iNOS production.

Our findings suggest that sickle cell disease may cause infarction of bone which subsequently leads to osteonecrosis. However, steroids and alcohol, or their metabolites, may have a direct cytotoxic effect upon bone leading to an increased NO production and NO-mediated apoptosis rather than necrosis. Our findings may provide important clues as to the underlying pathway leading osteocyte death. Therapeutic measures aimed at preventing production of toxic levels of NO or by blocking specific pathways in apoptosis may provide effective an treatment during the early stages of ONFH by halting disease progression.

The abstracts were prepared by Mr Simon Donell. Correspondence should be addressed to him at the Department of Orthopaedics, Norfolk & Norwich Hospital, Level 4, Centre Block, Colney Lane, Norwich NR4 7UY, United Kingdom.