Receive monthly Table of Contents alerts from Bone & Joint Open
Comprehensive article alerts can be set up and managed through your account settings
View my account settings
Patients with A1 and A2 trochanteric hip fractures represent a substantial proportion of trauma caseload, and national guidelines recommend that sliding hip screws (SHS) should be used for these injuries. Despite this, intramedullary nails (IMNs) are routinely implanted in many hospitals, at extra cost and with unproven patient outcome benefit. We have used data from the National Hip Fracture Database (NHFD) to examine the use of SHS and IMN for A1 and A2 hip fractures at a national level, and to define the cost implications of management decisions that run counter to national guidelines. We used the NHFD to identify all operations for fixation of trochanteric fractures in England and Wales between 1 January 2021 and 31 December 2021. A uniform price band from each of three hip fracture implant manufacturers was used to set cost implications alongside variation in implant use.Aims
Methods
Understanding of open fracture management is skewed due to reliance on small-number lower limb, specialist unit reports and large, unfocused registry data collections. To address this, we carried out the Open Fracture Patient Evaluation Nationwide (OPEN) study, and report the demographic details and the initial steps of care for patients admitted with open fractures in the UK. Any patient admitted to hospital with an open fracture between 1 June 2021 and 30 September 2021 was included, excluding phalanges and isolated hand injuries. Institutional information governance approval was obtained at the lead site and all data entered using Research Electronic Data Capture. Demographic details, injury, fracture classification, and patient dispersal were detailed.Aims
Methods
The extended wait that most patients are now experiencing for hip and knee arthroplasty has raised questions about whether reliance on waiting time as the primary driver for prioritization is ethical, and if other additional factors should be included in determining surgical priority. Our Prioritization of THose aWaiting hip and knee ArthroplastY (PATHWAY) project will explore which perioperative factors are important to consider when prioritizing those on the waiting list for hip and knee arthroplasty, and how these factors should be weighted. The final product will include a weighted benefit score that can be used to aid in surgical prioritization for those awaiting elective primary hip and knee arthroplasty. There will be two linked work packages focusing on opinion from key stakeholders (patients and surgeons). First, an online modified Delphi process to determine a consensus set of factors that should be involved in patient prioritization. This will be performed using standard Delphi methodology consisting of multiple rounds where following initial individual rating there is feedback, discussion, and further recommendations undertaken towards eventual consensus. The second stage will then consist of a Discrete Choice Experiment (DCE) to allow for priority setting of the factors derived from the Delphi through elicitation of weighted benefit scores. The DCE consists of several choice tasks designed to elicit stakeholder preference regarding included attributes (factors).Aims
Methods
To evaluate how abnormal proximal femoral anatomy affects different femoral version measurements in young patients with hip pain. First, femoral version was measured in 50 hips of symptomatic consecutively selected patients with hip pain (mean age 20 years (SD 6), 60% (n = 25) females) on preoperative CT scans using different measurement methods: Lee et al, Reikerås et al, Tomczak et al, and Murphy et al. Neck-shaft angle (NSA) and α angle were measured on coronal and radial CT images. Second, CT scans from three patients with femoral retroversion, normal femoral version, and anteversion were used to create 3D femur models, which were manipulated to generate models with different NSAs and different cam lesions, resulting in eight models per patient. Femoral version measurements were repeated on manipulated femora.Aims
Methods
Accurate identification of the ankle joint centre is critical for estimating tibial coronal alignment in total knee arthroplasty (TKA). The purpose of the current study was to leverage artificial intelligence (AI) to determine the accuracy and effect of using different radiological anatomical landmarks to quantify mechanical alignment in relation to a traditionally defined radiological ankle centre. Patients with full-limb radiographs from the Osteoarthritis Initiative were included. A sub-cohort of 250 radiographs were annotated for landmarks relevant to knee alignment and used to train a deep learning (U-Net) workflow for angle calculation on the entire database. The radiological ankle centre was defined as the midpoint of the superior talus edge/tibial plafond. Knee alignment (hip-knee-ankle angle) was compared against 1) midpoint of the most prominent malleoli points, 2) midpoint of the soft-tissue overlying malleoli, and 3) midpoint of the soft-tissue sulcus above the malleoli.Aims
Methods
Deprivation underpins many societal and health inequalities. COVID-19 has exacerbated these disparities, with access to planned care falling greatest in the most deprived areas of the UK during 2020. This study aimed to identify the impact of deprivation on patients on growing waiting lists for planned care. Questionnaires were sent to orthopaedic waiting list patients at the start of the UK’s first COVID-19 lockdown to capture key quantitative and qualitative aspects of patients’ health. A total of 888 respondents were divided into quintiles, with sampling stratified based on the Index of Multiple Deprivation (IMD); level 1 represented the ‘most deprived’ cohort and level 5 the ‘least deprived’.Aims
Methods
The aim of this study was to develop and evaluate machine-learning-based computerized adaptive tests (CATs) for the Oxford Hip Score (OHS), Oxford Knee Score (OKS), Oxford Shoulder Score (OSS), and the Oxford Elbow Score (OES) and its subscales. We developed CAT algorithms for the OHS, OKS, OSS, overall OES, and each of the OES subscales, using responses to the full-length questionnaires and a machine-learning technique called regression tree learning. The algorithms were evaluated through a series of simulation studies, in which they aimed to predict respondents’ full-length questionnaire scores from only a selection of their item responses. In each case, the total number of items used by the CAT algorithm was recorded and CAT scores were compared to full-length questionnaire scores by mean, SD, score distribution plots, Pearson’s correlation coefficient, intraclass correlation (ICC), and the Bland-Altman method. Differences between CAT scores and full-length questionnaire scores were contextualized through comparison to the instruments’ minimal clinically important difference (MCID).Aims
Methods
Traditionally, total hip arthroplasty (THA) templating has been performed on anteroposterior (AP) pelvis radiographs. Recently, additional AP hip radiographs have been recommended for accurate measurement of the femoral offset (FO). To verify this claim, this study aimed to establish quantitative data of the measurement error of the FO in relation to leg position and X-ray source position using a newly developed geometric model and clinical data. We analyzed the FOs measured on AP hip and pelvis radiographs in a prospective consecutive series of 55 patients undergoing unilateral primary THA for hip osteoarthritis. To determine sample size, a power analysis was performed. Patients’ position and X-ray beam setting followed a standardized protocol to achieve reproducible projections. All images were calibrated with the KingMark calibration system. In addition, a geometric model was created to evaluate both the effects of leg position (rotation and abduction/adduction) and the effects of X-ray source position on FO measurement.Aims
Methods
The primary aim of this study was to determine the ten-year outcome following surgical treatment for femoroacetabular impingement (FAI). We assessed whether the evolution of practice from open to arthroscopic techniques influenced outcomes and tested whether any patient, radiological, or surgical factors were associated with outcome. Prospectively collected data of a consecutive single-surgeon cohort, operated for FAI between January 2005 and January 2015, were retrospectively studied. The cohort comprised 393 hips (365 patients; 71% male (n = 278)), with a mean age of 34.5 years (SD 10.0). Over the study period, techniques evolved from open surgical dislocation (n = 94) to a combined arthroscopy-Hueter technique (HA + Hueter; n = 61) to a pure arthroscopic technique (HA; n = 238). Outcome measures of interest included modes of failures, complications, reoperation, and patient-reported outcome measures (PROMs). Demographic, radiological, and surgical factors were tested for possible association with outcome.Aims
Methods
There remains a lack of consensus regarding the management of chronic anterior sternoclavicular joint (SCJ) instability. This study aimed to assess whether a standardized treatment algorithm (incorporating physiotherapy and surgery and based on the presence of trauma) could successfully guide management and reduce the number needing surgery. Patients with chronic anterior SCJ instability managed between April 2007 and April 2019 with a standardized treatment algorithm were divided into non-traumatic (offered physiotherapy) and traumatic (offered surgery) groups and evaluated at discharge. Subsequently, midterm outcomes were assessed via a postal questionnaire with a subjective SCJ stability score, Oxford Shoulder Instability Score (OSIS, adapted for the SCJ), and pain visual analogue scale (VAS), with analysis on an intention-to-treat basis.Aims
Methods
The conventionally described mechanism of distal biceps tendon rupture (DBTR) is of a ‘considerable extension force suddenly applied to a resisting, actively flexed forearm’. This has been commonly paraphrased as an ‘eccentric contracture to a flexed elbow’. Both definitions have been frequently used in the literature with little objective analysis or citation. The aim of the present study was to use video footage of real time distal biceps ruptures to revisit and objectively define the mechanism of injury. An online search identified 61 videos reporting a DBTR. Videos were independently reviewed by three surgeons to assess forearm rotation, elbow flexion, shoulder position, and type of muscle contraction being exerted at the time of rupture. Prospective data on mechanism of injury and arm position was also collected concurrently for 22 consecutive patients diagnosed with an acute DBTR in order to corroborate the video analysis.Aims
Methods
To describe outcome reporting variation and trends in non-pharmacological randomized clinical trials (RCTs) of distal tibia and/or ankle fractures. Five electronic databases and three clinical trial registries were searched (January 2000 to February 2022). Trials including patients with distal tibia and/or ankle fractures without concomitant injuries were included. One reviewer conducted all searches, screened titles and abstracts, assessed eligibility, and completed data extraction; a random 10% subset were independently assessed and extracted by a second reviewer at each stage. All extracted outcomes were mapped to a modified version of the International Classification of Functioning, Disability and Health framework. The quality of outcome reporting (reproducibility) was assessed.Aims
Methods
The rationale for exacting restoration of skeletal anatomy after unstable ankle fracture is to improve outcomes by reducing complications from malunion; however, current definitions of malunion lack confirmatory clinical evidence. Radiological (absolute radiological measurements aided by computer software) and clinical (clinical interpretation of radiographs) definitions of malunion were compared within the Ankle Injury Management (AIM) trial cohort, including people aged ≥ 60 years with an unstable ankle fracture. Linear regressions were used to explore the relationship between radiological malunion (RM) at six months and changes in function at three years. Function was assessed with the Olerud-Molander Ankle Score (OMAS), with a minimal clinically important difference set as six points, as per the AIM trial. Piecewise linear models were used to investigate new radiological thresholds which better explain symptom impact on ankle function.Aims
Methods