Electromagnetic induction heating has demonstrated in vitro antibacterial efficacy over biofilms on metallic biomaterials, although no in vivo studies have been published. Assessment of side effects, including thermal necrosis of adjacent tissue, would determine transferability into clinical practice. Our goal was to assess bone necrosis and antibacterial efficacy of induction heating on biofilm-infected implants in an in vivo setting. Titanium-aluminium-vanadium (Ti6Al4V) screws were implanted in medial condyle of New Zealand giant rabbit knee. Study intervention consisted of induction heating of the screw head up to 70°C for 3.5 minutes after implantation using a portable device. Both knees were implanted, and induction heating was applied unilaterally keeping contralateral knee as paired control. Sterile screws were implanted in six rabbits, while the other six received screws coated with Aims
Methods
Implant-related infection is one of the most devastating complications in orthopaedic surgery. Many surface and/or material modifications have been developed in order to minimise this problem; however, most of the We describe a method for the study of bacterial adherence in the presence of preosteoblastic cells. For this purpose we mixed different concentrations of bacterial cells from collection and clinical strains of staphylococci isolated from implant-related infections with preosteoblastic cells, and analysed the minimal concentration of bacteria able to colonise the surface of the material with image analysis.Objectives
Methods
We have designed a prospective study to evaluate
the usefulness of prolonged incubation of cultures from sonicated
orthopaedic implants. During the study period 124 implants from
113 patients were processed (22 osteosynthetic implants, 46 hip
prostheses, 54 knee prostheses, and two shoulder prostheses). Of
these, 70 patients had clinical infection; 32 had received antibiotics
at least seven days before removal of the implant. A total of 54 patients
had sonicated samples that produced positive cultures (including
four patients without infection). All of them were positive in the
first seven days of incubation. No differences were found regarding
previous antibiotic treatment when analysing colony counts or days
of incubation in the case of a positive result. In our experience, extending
incubation of the samples to 14 days does not add more positive
results for sonicated orthopaedic implants (hip and knee prosthesis
and osteosynthesis implants) compared with a conventional seven-day incubation
period. Cite this article: