Accurate estimations of the risk of fracture due to metastatic bone disease in the femur is essential in order to avoid both under-treatment and over-treatment of patients with an impending pathological fracture. The purpose of the current retrospective in vivo study was to use CT-based finite element analyses (CTFEA) to identify a clear quantitative differentiating factor between patients who are at imminent risk of fracturing their femur and those who are not, and to identify the exact location of maximal weakness where the fracture is most likely to occur. Data were collected on 82 patients with femoral metastatic bone disease, 41 of whom did not undergo prophylactic fixation. A total of 15 had a pathological fracture within six months following the CT scan, and 26 were fracture-free during the five months following the scan. The Mirels score and strain fold ratio (SFR) based on CTFEA was computed for all patients. A SFR value of 1.48 was used as the threshold for a pathological fracture. The sensitivity, specificity, positive, and negative predicted values for Mirels score and SFR predictions were computed for nine patients who fractured and 24 who did not, as well as a comparison of areas under the receiver operating characteristic curves (AUC of the ROC curves).Aims
Methods
Intra-articular 90Yttrium (90Y) is an adjunct
to surgical treatment by synovectomy for patients with diffuse-type tenosynovial
giant-cell tumour (dtTGCT) of the knee, with variable success rates.
Clinical information is, however, sparse and its value remains unclear.
We investigated the long-term outcome of patients who underwent synovectomy
with and without adjuvant treatment with 90Yttrium. All patients with dtTGCT of the knee who underwent synovectomy
between 1991 and 2014 were included in the study. Group A patients
underwent synovectomy and an intra-articular injection of 90Yttrium
between six and eight weeks after surgery. Group B patients underwent
surgery alone.Aims
Patients and Methods