Advertisement for orthosearch.org.uk
Results 1 - 14 of 14
Results per page:

Aims. The aim of this study was to investigate the distribution of phenotypes in Asian patients with end-stage osteoarthritis (OA) and assess whether the phenotype affected the clinical outcome and survival of mechanically aligned total knee arthroplasty (TKA). We also compared the survival of the group in which the phenotype unintentionally remained unchanged with those in which it was corrected to neutral. Methods. The study involved 945 TKAs, which were performed in 641 patients with primary OA, between January 2000 and January 2009. These were classified into 12 phenotypes based on the combined assessment of four categories of the arithmetic hip-knee-ankle angle and three categories of actual joint line obliquity. The rates of survival were analyzed using Kaplan-Meier methods and the log-rank test. The Hospital for Special Surgery score and survival of each phenotype were compared with those of the reference phenotype with neutral alignment and a parallel joint line. We also compared long-term survival between the unchanged phenotype group and the corrected to neutral alignment-parallel joint line group in patients with Type IV-b (mild to moderate varus alignment-parallel joint line) phenotype. Results. The most common phenotype was Type I-b (mild to moderate varus alignment-medial joint line; 27.1% (n = 256)), followed by Type IV-b (23.2%; n = 219). There was no significant difference in the clinical outcomes and long-term survival between the groups. In Type IV-b phenotypes, the neutrally corrected group showed higher 15-year survival compared with the unchanged-phenotype group (94.9% (95% confidence interval (CI) 92.0 to 97.8) vs 74.2% (95% CI 98.0 to 100); p = 0.020). Conclusion. Constitutional varus was confirmed in more than half of these patients. Mechanically aligned TKA can achieve consistent clinical outcomes and long-term survival, regardless of the patient’s phenotype. The neutrally corrected group had better long-term survival compared with the unchanged phenotype group. Cite this article: Bone Joint J 2024;106-B(5):460–467


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 329 - 337
1 Feb 2021
MacDessi SJ Griffiths-Jones W Harris IA Bellemans J Chen DB

Aims. A comprehensive classification for coronal lower limb alignment with predictive capabilities for knee balance would be beneficial in total knee arthroplasty (TKA). This paper describes the Coronal Plane Alignment of the Knee (CPAK) classification and examines its utility in preoperative soft tissue balance prediction, comparing kinematic alignment (KA) to mechanical alignment (MA). Methods. A radiological analysis of 500 healthy and 500 osteoarthritic (OA) knees was used to assess the applicability of the CPAK classification. CPAK comprises nine phenotypes based on the arithmetic HKA (aHKA) that estimates constitutional limb alignment and joint line obliquity (JLO). Intraoperative balance was compared within each phenotype in a cohort of 138 computer-assisted TKAs randomized to KA or MA. Primary outcomes included descriptive analyses of healthy and OA groups per CPAK type, and comparison of balance at 10° of flexion within each type. Secondary outcomes assessed balance at 45° and 90° and bone recuts required to achieve final knee balance within each CPAK type. Results. There was similar frequency distribution between healthy and arthritic groups across all CPAK types. The most common categories were Type II (39.2% healthy vs 32.2% OA), Type I (26.4% healthy vs 19.4% OA) and Type V (15.4% healthy vs 14.6% OA). CPAK Types VII, VIII, and IX were rare in both populations. Across all CPAK types, a greater proportion of KA TKAs achieved optimal balance compared to MA. This effect was largest, and statistically significant, in CPAK Types I (100% KA vs 15% MA; p < 0.001), Type II (78% KA vs 46% MA; p = 0.018). and Type IV (89% KA vs 0% MA; p < 0.001). Conclusion. CPAK is a pragmatic, comprehensive classification for coronal knee alignment, based on constitutional alignment and JLO, that can be used in healthy and arthritic knees. CPAK identifies which knee phenotypes may benefit most from KA when optimization of soft tissue balance is prioritized. Further, it will allow for consistency of reporting in future studies. Cite this article: Bone Joint J 2021;103-B(2):329–337


The Bone & Joint Journal
Vol. 105-B, Issue 2 | Pages 102 - 108
1 Feb 2023
MacDessi SJ Oussedik S Abdel MP Victor J Pagnano MW Haddad FS

Orthopaedic surgeons are currently faced with an overwhelming number of choices surrounding total knee arthroplasty (TKA), not only with the latest technologies and prostheses, but also fundamental decisions on alignment philosophies. From ‘mechanical’ to ‘adjusted mechanical’ to ‘restricted kinematic’ to ‘unrestricted kinematic’ — and how constitutional alignment relates to these — there is potential for ambiguity when thinking about and discussing such concepts. This annotation summarizes the various alignment strategies currently employed in TKA. It provides a clear framework and consistent language that will assist surgeons to compare confidently and contrast the concepts, while also discussing the latest opinions about alignment in TKA. Finally, it provides suggestions for applying consistent nomenclature to future research, especially as we explore the implications of 3D alignment patterns on patient outcomes.

Cite this article: Bone Joint J 2023;105-B(2):102–108.


The Bone & Joint Journal
Vol. 106-B, Issue 6 | Pages 525 - 531
1 Jun 2024
MacDessi SJ van de Graaf VA Wood JA Griffiths-Jones W Bellemans J Chen DB

The aim of mechanical alignment in total knee arthroplasty is to align all knees into a fixed neutral position, even though not all knees are the same. As a result, mechanical alignment often alters a patient’s constitutional alignment and joint line obliquity, resulting in soft-tissue imbalance. This annotation provides an overview of how the Coronal Plane Alignment of the Knee (CPAK) classification can be used to predict imbalance with mechanical alignment, and then offers practical guidance for bone balancing, minimizing the need for soft-tissue releases. Cite this article: Bone Joint J 2024;106-B(6):525–531


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1059 - 1066
1 Oct 2024
Konishi T Hamai S Tsushima H Kawahara S Akasaki Y Yamate S Ayukawa S Nakashima Y

Aims. The Coronal Plane Alignment of the Knee (CPAK) classification has been developed to predict individual variations in inherent knee alignment. The impact of preoperative and postoperative CPAK classification phenotype on the postoperative clinical outcomes of total knee arthroplasty (TKA) remains elusive. This study aimed to examine the effect of postoperative CPAK classification phenotypes (I to IX), and their pre- to postoperative changes on patient-reported outcome measures (PROMs). Methods. A questionnaire was administered to 340 patients (422 knees) who underwent primary TKA for osteoarthritis (OA) between September 2013 and June 2019. A total of 231 patients (284 knees) responded. The ­Knee Society Score 2011 (KSS 2011), Knee injury and Osteoarthritis Outcome Score-12 (KOOS-12), and Forgotten Joint Score-12 (FJS-12) were used to assess clinical outcomes. Using preoperative and postoperative anteroposterior full-leg radiographs, the arithmetic hip-knee-ankle angle (aHKA) and joint line obliquity (JLO) were calculated and classified based on the CPAK classification. To investigate the impact on PROMs, multivariable regression analyses using stepwise selection were conducted, considering factors such as age at surgery, time since surgery, BMI, sex, implant use, postoperative aHKA classification, JLO classification, and changes in aHKA and JLO classifications from preoperative to postoperative. Results. The preoperative and postoperative CPAK classifications were predominantly phenotype I (155 knees; 55%) and phenotype V (73 knees; 26%), respectively. The change in the preoperative to postoperative aHKA classification was a significant negative predictive factor for KOOS-12 and FJS-12, while postoperative apex proximal JLO was a significant negative predictive factor for KSS 2011 and KOOS-12. Conclusion. In primary TKA for OA, preoperative and postoperative CPAK phenotypes were associated with PROMs. Alteration in varus/valgus alignment from preoperative to postoperative was recognized as a negative predictive factor for both KOOS-12 and FJS-12. Moreover, the postoperative apex proximal JLO was identified as a negative factor for KSS 2011 and KOOS-12. Determining the target alignment for each preoperative phenotype with reproducibility could improve PROMs. Cite this article: Bone Joint J 2024;106-B(10):1059–1066


The Bone & Joint Journal
Vol. 102-B, Issue 11 | Pages 1511 - 1518
1 Nov 2020
Banger MS Johnston WD Razii N Doonan J Rowe PJ Jones BG MacLean AD Blyth MJG

Aims. The aim of this study was to compare robotic arm-assisted bi-unicompartmental knee arthroplasty (bi-UKA) with conventional mechanically aligned total knee arthroplasty (TKA) in order to determine the changes in the anatomy of the knee and alignment of the lower limb following surgery. Methods. An analysis of 38 patients who underwent TKA and 32 who underwent bi-UKA was performed as a secondary study from a prospective, single-centre, randomized controlled trial. CT imaging was used to measure coronal, sagittal, and axial alignment of the knee preoperatively and at three months postoperatively to determine changes in anatomy that had occurred as a result of the surgery. The hip-knee-ankle angle (HKAA) was also measured to identify any differences between the two groups. Results. The pre- to postoperative changes in joint anatomy were significantly less in patients undergoing bi-UKA in all three planes in both the femur and tibia, except for femoral sagittal component orientation in which there was no difference. Overall, for the six parameters of alignment (three femoral and three tibial), 47% of bi-UKAs and 24% TKAs had a change of < 2° (p = 0.045). The change in HKAA towards neutral in varus and valgus knees was significantly less in patients undergoing bi-UKA compared with those undergoing TKA (p < 0.001). Alignment was neutral in those undergoing TKA (mean 179.5° (SD 3.2°)) while those undergoing bi-UKA had mild residual varus or valgus alignment (mean 177.8° (SD 3.4°)) (p < 0.001). Conclusion. Robotic-assisted, cruciate-sparing bi-UKA maintains the natural anatomy of the knee in the coronal, sagittal, and axial planes better, and may therefore preserve normal joint kinematics, compared with a mechanically aligned TKA. This includes preservation of coronal joint line obliquity. HKAA alignment was corrected towards neutral significantly less in patients undergoing bi-UKA, which may represent restoration of the pre-disease constitutional alignment (p < 0.001). Cite this article: Bone Joint J 2020;102-B(11):1511–1518


The Bone & Joint Journal
Vol. 106-B, Issue 12 | Pages 1363 - 1368
1 Dec 2024
Chen DB Wood JA Griffiths-Jones W Bellemans J Haddad FS MacDessi SJ

As advancements in total knee arthroplasty progress at an exciting pace, two areas are of special interest, as they directly impact implant design and surgical decision making. Knee morphometry considers the three-dimensional shape of the articulating surfaces within the knee joint, and knee phenotyping provides the ability to categorize alignment into practical groupings that can be used in both clinical and research settings. This annotation discusses the details of these concepts, and the ways in which they are helping us better understand the individual subtleties of each patient’s knee.

Cite this article: Bone Joint J 2024;106-B(12):1363–1368.


The Bone & Joint Journal
Vol. 106-B, Issue 3 | Pages 240 - 248
1 Mar 2024
Kim SE Kwak J Ro DH Lee MC Han H

Aims

The aim of this study was to evaluate whether achieving medial joint opening, as measured by the change in the joint line convergence angle (∆JLCA), is a better predictor of clinical outcomes after high tibial osteotomy (HTO) compared with the mechanical axis deviation, and to find individualized targets for the redistribution of load that reflect bony alignment, joint laxity, and surgical technique.

Methods

This retrospective study analyzed 121 knees in 101 patients. Patient-reported outcome measures (PROMs) were collected preoperatively and one year postoperatively, and were analyzed according to the surgical technique (opening or closing wedge), postoperative mechanical axis deviation (deviations above and below 10% from the target), and achievement of medial joint opening (∆JLCA > 1°). Radiological parameters, including JLCA, mechanical axis deviation, and the difference in JLCA between preoperative standing and supine radiographs (JLCAPD), an indicator of medial soft-tissue laxity, were measured. Cut-off points for parameters related to achieving medial joint opening were calculated from receiver operating characteristic (ROC) curves.


The Bone & Joint Journal
Vol. 106-B, Issue 5 | Pages 420 - 421
1 May 2024
Oussedik S Haddad FS


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1231 - 1239
1 Nov 2024
Tzanetis P Fluit R de Souza K Robertson S Koopman B Verdonschot N

Aims

The surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty remains the subject of ongoing discussion. One of the proposed targets is to recreate the knee’s functional behaviour as per its pre-diseased state. The aim of this study was to optimize implant positioning, starting from mechanical alignment (MA), toward restoring the pre-diseased status, including ligament strain and kinematic patterns, in a patient population.

Methods

We used an active appearance model-based approach to segment the preoperative CT of 21 osteoarthritic patients, which identified the osteophyte-free surfaces and estimated cartilage from the segmented bones; these geometries were used to construct patient-specific musculoskeletal models of the pre-diseased knee. Subsequently, implantations were simulated using the MA method, and a previously developed optimization technique was employed to find the optimal implant position that minimized the root mean square deviation between pre-diseased and postoperative ligament strains and kinematics.


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 507 - 514
1 Mar 2021
Chang JS Kayani B Wallace C Haddad FS

Aims

Total knee arthroplasty (TKA) using functional alignment aims to implant the components with minimal compromise of the soft-tissue envelope by restoring the plane and obliquity of the non-arthritic joint. The objective of this study was to determine the effect of TKA with functional alignment on mediolateral soft-tissue balance as assessed using intraoperative sensor-guided technology.

Methods

This prospective study included 30 consecutive patients undergoing robotic-assisted TKA using the Stryker PS Triathlon implant with functional alignment. Intraoperative soft-tissue balance was assessed using sensor-guided technology after definitive component implantation; soft-tissue balance was defined as intercompartmental pressure difference (ICPD) of < 15 psi. Medial and lateral compartment pressures were recorded at 10°, 45°, and 90° of knee flexion. This study included 18 females (60%) and 12 males (40%) with a mean age of 65.2 years (SD 9.3). Mean preoperative hip-knee-ankle deformity was 6.3° varus (SD 2.7°).


The Bone & Joint Journal
Vol. 97-B, Issue 10_Supple_A | Pages 16 - 19
1 Oct 2015
Oussedik S Abdel MP Cross MB Haddad FS

Many aspects of total knee arthroplasty have changed since its inception. Modern prosthetic design, better fixation techniques, improved polyethylene wear characteristics and rehabilitation, have all contributed to a large change in revision rates. Arthroplasty patients now expect longevity of their prostheses and demand functional improvement to match. This has led to a re-examination of the long-held belief that mechanical alignment is instrumental to a successful outcome and a focus on restoring healthy joint kinematics. A combination of kinematic restoration and uncemented, adaptable fixation may hold the key to future advances.

Cite this article: Bone Joint J 2015;97-B(10 Suppl A):16–19.


The Bone & Joint Journal
Vol. 95-B, Issue 4 | Pages 436 - 444
1 Apr 2013
Scott CEH Nutton RW Biant LC

The lateral compartment is predominantly affected in approximately 10% of patients with osteoarthritis of the knee. The anatomy, kinematics and loading during movement differ considerably between medial and lateral compartments of the knee. This in the main explains the relative protection of the lateral compartment compared with the medial compartment in the development of osteoarthritis. The aetiology of lateral compartment osteoarthritis can be idiopathic, usually affecting the femur, or secondary to trauma commonly affecting the tibia. Surgical management of lateral compartment osteoarthritis can include osteotomy, unicompartmental knee replacement and total knee replacement. This review discusses the biomechanics, pathogenesis and development of lateral compartment osteoarthritis and its management.

Cite this article: Bone Joint J 2013;95-B:436–44.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 6 | Pages 868 - 872
1 Jun 2005
Metcalfe AJ Saleh M Yang L

Biomechanical studies involving all-wire and hybrid types of circular frame have shown that oblique tibial fractures remain unstable when they are loaded. We have assessed a range of techniques for enhancing the fixation of these fractures. Eight models were constructed using Sawbones tibiae and standard Sheffield ring fixators, to which six additional fixation techniques were applied sequentially.

The major component of displacement was shear along the obliquity of the fracture. This was the most sensitive to any change in the method of fixation. All additional fixation systems were found to reduce shear movement significantly, the most effective being push-pull wires and arched wires with a three-hole bend. Less effective systems included an additional half pin and arched wires with a shallower arc. Angled pins were more effective at reducing shear than transverse pins.

The choice of additional fixation should be made after consideration of both the amount of stability required and the practicalities of applying the method to a particular fracture.