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Aims
This systematic review aims to identify 3D predictors derived from biplanar reconstruction, and
to describe current methods for improving curve prediction in patients with mild adolescent
idiopathic scoliosis.

Methods
A comprehensive search was conducted by three independent investigators on MEDLINE,
PubMed, Web of Science, and Cochrane Library. Search terms included “adolescent idiopathic
scoliosis”,“3D”, and “progression”. The inclusion and exclusion criteria were carefully defined
to include clinical studies. Risk of bias was assessed with the Quality in Prognostic Studies
tool (QUIPS) and Appraisal tool for Cross-Sectional Studies (AXIS), and level of evidence for
each predictor was rated with the Grading of Recommendations, Assessment, Development,
and Evaluations (GRADE) approach. In all, 915 publications were identified, with 377 articles
subjected to full-text screening; overall, 31 articles were included.

Results
Torsion index (TI) and apical vertebral rotation (AVR) were identified as accurate predictors of
curve progression in early visits. Initial TI > 3.7° and AVR > 5.8° were predictive of curve pro-
gression. Thoracic hypokyphosis was inconsistently observed in progressive curves with weak
evidence. While sagittal wedging was observed in mild curves, there is insufficient evidence for
its correlation with curve progression. In curves with initial Cobb angle < 25°, Cobb angle was a
poor predictor for future curve progression. Prediction accuracy was improved by incorporating
serial reconstructions in stepwise layers. However, a lack of post-hoc analysis was identified in
studies involving geometrical models.

Conclusion
For patients with mild curves, TI and AVR were identified as predictors of curve progression,
with TI > 3.7° and AVR > 5.8° found to be important thresholds. Cobb angle acts as a poor
predictor in mild curves, and more investigations are required to assess thoracic kyphosis and
wedging as predictors. Cumulative reconstruction of radiographs improves prediction accuracy.
Comprehensive analysis between progressive and non-progressive curves is recommended to
extract meaningful thresholds for clinical prognostication.

SPINE @BoneJointOpen

3D prediction of curve progression in adolescent idiopathic scoliosis based on biplanar radiological reconstruction
H-T. S. Wan, D. L. L. Wong, C-H. S. To, N. Meng, T. Zhang, J. P. Y. Cheung

243

Cite this article:
Bone Jt Open 2024;5(3):
243–251.

DOI: 10.1302/2633-1462.
53.BJO-2023-0176.R1

Correspondence should be
sent to J. P. Y. Cheung
cheungjp@hku.hk

mailto: cheungjp@hku.hk
mailto: cheungjp@hku.hk


Take home message
• The torsion index and apical vertebral rotation are good 3D

predictors of curve progression.
• 3D Cobb angle, thoracic kyphosis, and sagittal wedging are

weaker predictors that require further investigation.
• Serial spinal reconstructions and inclusion of growth

extrapolation are needed to provide better predictive model
accuracy.

Introduction
Adolescent idiopathic scoliosis (AIS) is a complex condition
that requires regular follow-up monitoring and casts sig-
nificant psychosocial pressure on its patients.1-6 Prediction
of curve progression can reduce unnecessary consultations
and bracing in non-progressive patients, while allowing
earlier intervention and proper prognostication to progressive
patients.7,8

As a 3D deformity, AIS is characterized by the lat-
eral spinal curvature in the frontal plane, a disturbance of
physiological spinal curvatures in the sagittal plane, and an
axial rotation of the vertebrae in the transverse plane.9-14

Despite hypokyphosis and axial rotation being recognized as
important factors in curve development, patients undergoing
conservative management are usually only assessed using 2D
Cobb angle and bone age for prediction of curve progression.
In the recent literature, more specialized centres have been
characterizing spinal deformity in axial and sagittal planes to
improve accuracy in predicting curve progression.15-21

To assess rotation in larger curves, the Nash-Moe22

method has been extensively used, but it is limited by low
accuracy and replicability.23,24 Meanwhile, 3D reconstruction
from CT scans are not routinely performed due to exposure
to ionizing radiation.25,26 In recent years, 3D reconstruction
of biplanar radiographs has been increasingly validated for
its accuracy and reproducibility.27,28 It should be noted that
3D in the context of biplanar reconstruction also refers to
the ability to derotate vertebral segments to obtain segmen-
tal kyphosis, wedging, and intervertebral rotation in the
patient plane.29–31 While providing extensive quantitative data,
commercially available programs for biplanar reconstruction
still require considerable manual effort in mapping spinal
landmarks prior to the automated measurement sequence.32

In recent years, we have also seen a rise in transdisciplinary
studies using machine learning on clinical data to develop
in-house programs for predicting curve progression,7,16,33–36

which involves specialized terminology that may be challeng-
ing to digest.

To extract useful clinical points from the diverse
range of existing studies, this systematic review aims to
identify and investigate 3D parameters derived from biplanar
reconstruction as predictors of curve progression. The focus
is on nonoperative AIS patients, especially to stratify risk of
progression at early visits. In addition, the review aims to
summarize current techniques to improve predictive accuracy
using machine learning.

Methods
Search strategy and selection criteria
The literature search and reporting of study results were
conducted according to the Preferred Reporting Items for
Systematic reviews and Meta-Analyses (PRISMA) statement.37

Three independent investigators (HTSW, DLLW, CHST)
performed an extensive search on the following databases:
PubMed, Web of Science, MEDLINE, and Cochrane Library.
All fields were searched in the databases using the following
keywords: (adolescent idiopathic scoliosis) AND ((biplanar) OR
(3D) OR (three-dimensional)) AND ((progression) OR (align-
ment) OR (prognosis)). The search was limited to publications
from 1 January 1996 to 31 December 2023 to exclude obsolete
techniques in generating 3D spinal models. The full search
strategy can be seen in Supplementary Table i. Potentially
relevant abstracts were screened based on the inclusion and
exclusion criteria (Table I), and full-text articles were obtained
for eligible results. The references of each included article were
screened for any other pertinent articles (see Supplementary
Table ii). Any discrepancies in the final decision of inclusion
were settled through discussion with all authors.

Data extraction and critical appraisal
The primary outcome of this systematic review was the
efficacy of 3D parameters derived from biplanar radiographs
as predictors of curve progression in nonoperative AIS, which
was reported using statistical measures including sensitiv-
ity and specificity, positive predictive value (PPV), negative
predictive value (NPV), area under the curve (AUC), root
mean square error (RMSE), and R-squared (r2). The secondary
outcome was to summarize methods to improve prediction
analysis involving geometrical models.

The 3D parameters derived from biplanar radiographs
include Cobb angle, coronal tilt, thoracic kyphosis (TK), lumbar
lordosis (LL), apical vertebral rotation (AVR), intervertebral
rotation at the upper junctional zone (upper IAR), interverte-
bral rotation at the lower junctional zone (lower IAR), angle
of the plane of the maximum curvature (POMC), torsion index
(TI), hypokyphosis index, and vertebral and/or disc wedging
in the frontal and sagittal planes. Detailed descriptions of the
included parameters are shown in Supplementary Tables iv to
vi.

Other information regarding the study design, sample
size, patient population, predictors identified, risk of bias, and
level of evidence can also be viewed in the Supplementary
Material.

Risk of bias
Three independent reviewers (HTSW, DLLW, CHST) assessed
the risk of bias for the included longitudinal studies using
the six domains of the Quality in Prognostic Studies (QUIPS).38

For retrospective studies, bias due to attrition is not appli-
cable and therefore not assessed. The QUIPS risk of bias
for these studies is detailed in the Supplementary Table iii.
Cross-sectional studies were assessed using the Appraisal tool
for Cross-Sectional Studies (AXIS).39 Due to lack of a scoring
system, overall results will be described using mean num-
ber of items achieved and any notable underperformance
in particular items will be reported. Any discrepancy was
discussed with all authors until a consensus was reached.

Grading of evidence
The three reviewers assessed the quality of evidence of
the outcomes according to the Grading of Recommenda-
tions Assessment, Development and Evaluation (GRADE)
approach.40 All included studies in this review were
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observational studies and were thus initially assigned as
having a low level of evidence, according to GRADE guide-
lines.40 Downgrading of quality of evidence was done
according to the five domains in the GRADE guidelines:
risk of bias,41 imprecision,41,42 indirectness,43 inconsistency,41

and publication bias.44 Meanwhile, the quality of evidence
was upgraded based on large magnitude of effect, dose-
response gradient, and plausible confounding that can
increase confidence in estimated effects.45 The overall quality
of evidence is detailed in the Supplementary Tables vii to viii.

Search results
The search results are illustrated in the PRISMA flowchart
(Figure 1). A total of 915 articles were yielded from the initial
search, of which 183 articles were from MEDLINE, 299 articles
from Web of Science, 37 articles from Cochrane library, and
396 articles from PubMed. Of the 915 articles, there were 538
duplicated articles, and 377 unique articles were screened for
the inclusion and exclusion criteria. As a result, a total of 31
articles were included in the final study for further analysis.

Among the 31 articles included, 16 were cross-sectional
studies, 13 were retrospective cohort studies, one was a
prospective cohort study, and another a prospective case-con-
trol study. Sample sizes ranged from ten to 321 AIS subjects.
Overall, nine studies included patients with mild curves (< 20°)
exclusively, while the remaining studies included moderate
(20° to 40°) or severe curves (> 40°). The mean age of subjects
across studies was 13.3 years (10 to 18) and the length of
follow-up ranged from three months to eight years. Progres-
sion was defined by most studies as interval increase in Cobb
angle > 5°, or the initiation of brace treatment as deter-
mined by an orthopaedic specialist. The overall risk of bias
for included studies was low. For cross-sectional studies, the
mean number of AXIS items accomplished was 19.2 (standard
deviation (SD) 1.0; 17 to 20), with cohort base being the most
frequently violated item, followed by eligibility criteria.

Results
Coronal plane
For patients with mild curves, there is moderate evidence from
five studies supporting 3D Cobb angle as a weak predictor
for differentiating the risk of curve progression. Wang et al19

and Nault et al46 reported no significant difference in initial
3D Cobb angle comparing progressive and non-progressive
groups. The two studies each had considerable sample sizes
compared to 3D reconstruction studies in the literature, with

490 subjects and 172 subjects, respectively. Vergari et al16,17

also found initial 3D Cobb angle to be similar (mean differ-
ence < 3°) between progressive and non-progressive groups,
but did not present results of statistical comparison. Aside
from 3D Cobb angle, Nault et al47 also reported coronal apical
disc wedging as a statistically significant predictor of final
Cobb angle (β = 0.820; p = 0.016). However, the effect is
small, and prior study by the same group of authors found
no difference in initial coronal apical disc wedging between
progressive and non-progressive groups.46 Almansour et al48

used coronal tilt to characterize segmental lateral displace-
ment in the frontal plane. However, changes in coronal tilt
after bracing largely reflected reduction in Cobb angle and
provided little additional information.

Sagittal plane
In our included studies, 3D thoracic kyphosis (3D TK) and
sagittal wedging were the most frequently reported sagittal
parameters. There is weak evidence supporting 3D TK as a
predictor of curve progression from three studies.18,46,49 In a
study of 172 patients, Nault et al18 reported weak correlation
between 3D T4-T12 TK at first visit and final 3D Cobb angle
(r = −0.288, p = 0.01). Another study by the same group of
authors46 reported that patients with progressive curves had
lower initial 3D T4-T12 TK compared to the non-progressive
group (mean 20.6° vs 25.0°; p = 0.02). Conversely, Wang et
al19 reported no significant difference in initial 3D T4-T12 TK
between two groups (22.3 (SD 8.5) vs 21.4 (SD 9.2), p = 0.635).

Sagittal vertebral wedging was reported in five
studies.49–53 Begon et al50 reported that sagittal vertebral
wedging is present in mild curves. Scherrer et al51 reported
that vertebral wedging at thoracic apices was associated
with increase in Cobb angle. However, statistical evidence
supporting its use in predicting curve progression is lacking. A
‘hypokyphosis index’ was mentioned in two studies,49,53 which
was a function of wedging of the apical vertebra compared to
normal controls. While its replicability is low, the hypokyphosis
index was reported to increase predictive accuracy for curve
progression. Lastly, none of our included studies reported
spinopelvic parameters as curve predictors of significance.

Axial plane
There is moderate evidence from five studies supporting
axial rotation and/or TI as good predictors of curve progres-
sion (Table II). Among our included studies, AVR, interver-
tebral axial rotation (IAR), and TI were the most reported

Table I. Inclusion and exclusion criteria.

Inclusion criteria Exclusion criteria

• Patients with nonoperative adolescent idiopathic scoliosis
• Studies reporting 3D parameters derived from 2D and

biplanar radiographs as predictors of curve progression

• Biomechanical or cadaveric studies
• Case reports, conference summaries, unpublished litera-

ture, commentaries, and reviews
• Sample size fewer than 10
• Studies including patients with idiopathic scoliosis of non-

adolescent type, or non-idiopathic scoliosis caused by
known pathologies such as trauma, congenital conditions,
or infections
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parameters representing axial rotation. In sterEOS 3D (EOS
Imaging, France), axial rotation is calculated for each vertebra
after adjusting for pelvic rotation.49,54–58 IAR was typically
reported for both upper and lower junctions.59,60 The TI was
generally defined as the mean of the two sums of IAR from the
lower junction to the apex, and from the apex to the upper
junction, as described by Steib et al.18,46,61,62 Several studies
used geometrical modelling to obtain torsion,16,49,63,64 and
Skalli et al49 incorporated torsion into the ‘severity index’ for
predicting progression.

Among the transverse parameters, Courvoisier et al65

reported that TI had the highest predictive value (Figure 2) for
progression compared to AVR and IAR. When a TI of 3.7 was
used as a cut-off, prediction of progression had a sensitivity
and specificity of 81% (AUC 0.85 (0.77 to 0.94)). Wang et al19

analyzed radiographs of patients at the first visit, and reported
that while the progressive group had similar Cobb angle, TK,
and LL with the non-progressive group, the progressive group
had higher AVR and torsion.

Several cross-sectional studies that were included also
analyzed differences between Lenke curve types. Despite the
lack of serial data, the differences in 3D spinal deformity
between curve types may offer insights into the pathome-
chanism of curve progression. Karam et al53 reported that
thoracic curves, which typically have larger Cobb angles, had
the highest TI, while TL curves had the highest AVR. Con-
versely, Courvoisier et al65 found that TI was comparable for T
and L curves.

Prediction analysis
Inclusion of cumulative reconstructions was reported to
improve prediction accuracy, when compared to only using
the spinal reconstruction from the most recent visit (i.e.
sequential layering). García-Cano et al66 reported that the
average root mean square error (RMSE) of the spinal model
was improved from 10.36 mm to 8.78 mm after considering all
reconstructions from prior visits. Regarding the type of
prediction model, García-Cano et al66 reported using a random
forest model to directly predict spinal morphology, while
Kadoury et al67 used probabilistic classification model to
identify progressive curves, in which the model was reported
to be superior to using a support vector machine model.

Five studies used geometrical spinal models instead of
conventional 3D parameters, thus the predictors were
presented as clusters of 3D morphology,66 or composite ‘black-
box’ models, in which relative importance of spinal parameters
was not specified.16,49,67,68 Despite the lack of detailed analysis,
these studies on a whole demonstrated accurate predictions,
with sensitivity ranging from 88% to 92% and specificity
ranging from 74% to 84%.

Discussion
3D reconstruction of biplanar radiographs allows comprehen-
sive evaluation of the scoliotic spine and offers robust data
for accurately predicting curve prediction. In this review,
we have collected and summarized the key predictors of

Fig. 1
PRISMA (preferred reporting items for systematic reviews and meta-
analyses) flowchart illustrating selection process of articles.

Table II. Comparison of axial parameters between progressive and non-progressive groups.

Mean Torsion index, ° (SD) Mean apical vertebral rotation, ° (SD)

Author Progressive Non-progressive p-value Progressive Non-progressive p-value

Courvoisier et al65 7 (2) 3 (1) < 0.001† 9 (3) 4 (2) < 0.001†

Wang et al19 6 (3) 3 (2) 0.020‡ 7 (5) 4 (3) 0.006‡

Nault et al46 4.5* 3.1* 0.02‡ 8.1* 5.7* 0.006‡

Vergari et al16 4.1 (2.1) 5.6 (2.8) N/A 7.6 (4.1) 6.1 (3.6) N/A

Skalli et al49 6 (3 4 ± 2 < 0.05‡ 7 (4) 6 (4) N/A

Different authors reported the means and standard deviations in different decimal places.
*Nault et al did not report SDs.
†< 0.001.
‡< 0.05.
N/A, not available; SD, standard deviation.
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curve progression in mild curves. TI and AVR, both trans-
verse parameters, were identified as accurate predictors with
moderate evidence, while 3D TK and sagittal wedging was
identified as predictors with weak evidence (Figure 2). In
patients with mild curves, 3D Cobb angle was found to be a
weak predictor with moderate evidence. In terms of predictive
modelling, using cumulative layering of past reconstructions
increases predictive accuracy.

Coronal curvature
It is well established that a larger Cobb angle predisposes
to curve progression.1,7,18 A systematic review by Wong et al1

found that initial 2D Cobb angle > 25° and thoracic curves
were predictive of curve progression. However, most of our
included longitudinal studies involves the first radiograph
at early visits, when patients are skeletally immature and
have mild curves. Nault et al46 and Wang et al19 reported
no significant differences when comparing initial 3D Cobb
angle between progressive and non-progressive groups. The
evidence supports the theory that coronal curvature is not
the initial trigger of curve progression, which will be elabo-
rated in the following sections. Nevertheless, as Cobb angle

acts as a poor predictor at mild stages, the coronal curvature
eventually evolves along with wedging and rotation in other
planes, which adds predictive value. To evaluate the predictive
power of increasing Cobb angle on growing patients, Parent
et al7 compared the accuracy of predictive models based on
2D Cobb angle assessed at different consultations. Relative
skeletal immaturity with larger initial 2D Cobb angle and
longer duration of observation were associated with curve
progression, though the cohort had a larger range of baseline
Cobb angle (20° (SD 10°)). The longitudinal study design and
clinically oriented reporting present as a strong framework for
potential studies using 3D spinal parameters, and can pave the
way for accurate predictions at first visits.

Sagittal deformity
While there is no universally accepted theory explaining
the pathogenesis of AIS, anterior column overgrowth is a
frequently studied phenomenon,69–75 with ongoing debate
surrounding the cause-effect relationship with wedging and
rotation.76,77 Our included studies also reported sagittal
wedging in lower junctional vertebrae and discs, which was
associated with increases in Cobb angle.49,51 Among thoracic,

Fig. 2
Summary of important outcomes from the current review. #Torsion index refers to the mean intervertebral rotation within the scoliotic segment.
*Hypokyphosis was quantified by 3D T5-T12 thoracic kyphosis as well as sagittal wedging of the vertebra and intervertebral disc, respectively.
^Cumulative reconstruction refers to including all past reconstructions and intermediate output layers in every input layer of the predictive model, as
opposed to sequential layering, in which only the most recent spinal reconstruction is included in the input layer.
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thoracolumbar, and lumbar curves, thoracic hypokyphosis was
consistently observed in 3D studies.53,78–80 Using CT recon-
struction, Schlösser et al81 reported that anterior overgrowth
was observed in primary and compensatory curves, but not
at junctional segments. In contrast, 2D studies have either
identified hypokyphosis in thoracic curves only,82,83 or found
that TK in AIS patients was equivocal to controls.84

Although further investigations are needed, the current
evidence from 3D studies supports thoracic hypokyphosis
and sagittal wedging as potential predictors present even
in mild curves.18,49,72 This may be explained by the shift
of plane of maximum curvature towards the frontal plane
in hypokyphotic patients. The asymmetrical loading on the
vertebral bodies due to gravity-induced torque may result in
frontal wedging and progressive intervertebral rotation.75,85,86

While accurate estimation of TK in the patient plane remains
challenging on plain radiography,87,88 algorithms to predict
3D TK based on 2D Cobb and 2D TK present as promising,
accessible tools for clinical practice.89

Rotation and torsion
Our included studies indicated that axial rotation and TI
improved overall accuracy of predicting curve progression. TI
> 3.4° was strongly predictive of progression, which was likely
because TI is a summative parameter taking in account of
all intervertebral rotations across the scoliotic segment, and
thus also captures curve types by location. Interestingly, Wang
et al19 reported increase in AVR ahead of TK increase, which
remains to be further investigated as the cohort only included
162 subjects. Among curve types, thoracic curves had the
highest TI while thoracolumbar curves had the highest AVR,
and both had significantly larger Cobb angle than lumbar
curves.53 While a systematic review of 2D predictors by Wong
et al1 has also found that thoracic curves and high AVR were
associated with curve progression, characterizing rotation of
the whole curve may improve prediction of curve progres-
sion.19,49

While conventional methods of estimating rotation
in daily practice, such as Nash-Moe grading, are limited
by low reproducibility,24 estimation of AVR using 2D Cobb
angle and 2D TK,90 as well as fully automated measurement
programmes,91 both exist as efficient solutions. Digital surface
topography devices to quantify spinal and trunk rotation
have also become more widely used in place of scoliometers,
allowing whole-spine assessment.92–94

Prediction analysis
Machine-learning algorithms are capable of processing
complex data and generating more accurate predictions
compared to traditional regression models. Serial reconstruc-
tions arranged in stepwise layers were found to strongly
improve prediction accuracy,7,66 as this allows better extrap-
olation of growth trajectories. While random forest model
and probabilistic classification model were reported as useful
prognostication models,66,67 more complex models, such
artificial neural network models,19,34 have yet to be explored
in 3D analysis. Regardless of reconstruction technique, most
machine-learning programs can generate a vast amount of
quantitative data. While dimensionality reduction tools aids
in the extraction and refinement of statistically significant
parameters, these often result in complex clusters involving

combinations of coronal, sagittal, and axial deformities that 
are difficult to  translate into clinical prognostication. De spite 
the ability to capture complex deformities, generalizable 
nomenclature is still necessary for meaningful interpretation. 
Comprehensive post-hoc analysis is also integral for gen-
erating cut-offs and analyzing interactions between spinal 
parameters, and thus should always be incorporated.

This is the first review to evaluate predictors of curve 
progression based on 3D reconstruction of biplanar radio-
graphs. There were several limitations in this review. First, 
due to different methodologies in our included studies in 
terms of timeframe and reconstruction technique, a meta-
analysis could not be performed. For studies using semi-auto-
mated methods for variable extraction, more comprehensive 
characterization of synthesized features would allow better 
interpretation. Second, publication bias could not be assessed, 
as most studies did not report effect sizes and confidence 
intervals. Third, no randomized controlled trials were identified 
during our search. Nevertheless, the predictors extracted from 
included studies were rigorously examined for quality of 
evidence.

In conclusion, TI and AVR were good predictors of curve 
progression, while more investigations are needed to validate 
3D thoracic kyphosis and sagittal wedging as predictors; 3D 
Cobb angle was found to be a weak predictor. To improve 
predictive accuracy, machine-learning models based on serial 
spinal reconstructions can be used to capture the com-
plex interactions between spinal parameters and extrapolate 
growth trajectories. Future research should include more 
comprehensive post-hoc analysis with comparison of relative 
importance among various parameters to facilitate interpreta-
tion. In daily practice, algorithms to predict 3D TK and AVR 
based on 2D parameters, as well as surface topography, can be 
applied to quickly assess curve morphology.

Social media
Follow J. P. Y. Cheung on X @jasonpycheung

Supplementary material
Tables showing the search strategy; details of included studies;
risk of bias assessed using Quality in Prognostic Studies (QUIPS);
coronal, sagittal, and axial parameters; machine-learning methods;
and details of the included 3D parameters.
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